首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A design technique to improve the spurious resonance behavior of dual‐band bandstop filters is presented. A compact dual‐band bandstop filter with two stop bands that can be controlled independently with improved passband frequency response is designed. The operational bandwidth of the proposed compact dual‐band bandstop filter is increased by pushing the first spurious resonance from being about twice the resonance frequency to more than three times the resonance frequency. Stepped impedance open loop resonators with substantially increased outer‐edge width are used to improve the spurious resonance response. Both simulation and measured results are presented and good agreement is obtained between the results. The fabricated filter exhibits dual operating frequencies at 1460 MHz and 2640 MHz with 5.5% and 5% stopband fractional bandwidths, respectively. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE 23: 627–633, 2013.  相似文献   

2.
We propose the improved configurations with dual‐mode dual‐square‐loop resonators (DMDSLR) for quad‐band bandpass filter (BPF) design. The modified DMDSLR filter employs two sets of the loops. The square loop is designed to operate at the first and third resonated frequencies (2.4/5.22 GHz) and the G‐shaped loop is employed at the second and fourth resonated frequencies (3.59/6.6 GHz). The resonant frequency equations of DMDSLR are introduced for simply designing quad‐band BPF. Resonant frequencies can be controlled by tuning the perimeter ratio of the square loops. A systematic design procedure with the design map is applied for accuracy design. To obtain lower insertion loss, higher out‐of‐band rejection level and wider bandwidth of quad‐band, the miniaturized DMDSLR with meander‐line technique is proposed. The proposed filters are successfully simulated and measured showing frequency responses and current distributions. It can be applied to WLAN and WiMAX quad‐band systems. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:332–340, 2014.  相似文献   

3.
A complete UMTS transmitter is proposed. It is composed of a radiofrequency (RF) signal generator, a power stage, and a bulk acoustic wave (BAW) duplexer. The 90‐nm CMOS digital RF signal generator is based on a third‐order delta‐sigma modulator using innovative design techniques to increase work frequency and a BAW filter to get rid of out‐of‐band quantization noise. The filter exhibits very high rejection, 3 dB of insertion losses at 1.95 GHz for a 3% fractional bandwidth. The 0.25‐μm BiCMOS power stage feeds a BAW duplexer that allows to share a common between W‐CDMA emission and reception. This 4 × 4 mm2 duplexer, built with flip‐chipped BAW on glass substrate, ensures good isolation. The full transmitter measurements show the compliance with respect to spurious emissions in the different frequency bands and an EVM measurement at the state of the art (<5%). © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2011.  相似文献   

4.
In this paper, a compact novel simple design of ultra‐wide bandpass filter with high out of band attenuation is presented. The filter configuration is based on combining an ultra‐wide band composite right/left‐handed (CRLH) band pass filter (BPF) with simple uni‐planar configuration of complementary split ring resonator (UP‐CSRR). By integrating two UP‐CSRR cells, the ultra‐wideband CRLH filter roll‐off and wide stopband attenuation are enhanced. The filter has 3 dB cutoff frequencies at 3.1 GHz and 10.6 GHz with insertion loss equals 0.7 dB in average and minimum and maximum values of 0.48 dB and 1.05 dB, respectively over the filter passband. Within the passband. The transition band attenuation from 3 dB to 20 dB is achieved within the frequency band 1.9 GHz to 3.1 GHz (48%) at lower cutoff and the frequency band 10.6 GHz to 11.4 GHz (7%) at upper stopband. Moreover, the filter has a wide stopband attenuation >20 dB in frequencies 11 GHz to 13.6 GHz (21%) and ends with 3 dB cutoff frequency at 14.8 GHz. Furthermore, the designed filter size is very compact (23 × 12 mm2) whose length is only about 0.17 λg at 6.85 GHz. The filter performance is examined using circuit modeling, full‐wave simulations, and experimental measurements with good matching between all of them.  相似文献   

5.
In this article, a filtering antenna array based on substrate integrated waveguide (SIW) is proposed with quasi‐elliptic gain responses for the first time. Two radiation nulls in the gain responses at two sides of the frequency band edges are designed by applying a novel intercavity bypass coupling scheme. First, by carefully analyzing the bypass coupling between the in‐band and out‐of‐band modes in a single oversized TE103 mode cavity resonator, quasi‐elliptic filtering responses are achieved for a two‐output filter. Afterward, those cavity resonators coupled with the two outputs are replaced by cavity‐backed slot antennas to achieve the proposed filtering cavity‐backed slot antenna array. Only one cavity is required in our design to achieve the two transmission zeros and the function of power divider. As a result, the complexity of the proposed filtering antenna array is reduced. A prototype operating at Ka band is designed, fabricated and measured with a center frequency of 28.5 GHz and fractional bandwidth of 1.25%. Similar characteristics can be observed between the gain response of the proposed filtering antenna and the transmission responses of the two‐output filter. The proposed SIW filtering antenna array has great potential to be integrated into millimeter‐wave transceiver modules. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:191–198, 2016.  相似文献   

6.
In this article, a compact, semi‐lumped and high power low‐pass filter in VHF band frequency is designed, fabricated, and measured. A semi‐lumped structure is used to decrease the size of the filter and improve its power handling. In high power analysis, all effects of critical points in distributed and lumped structures are considered. The experimental measurements show close agreement with the simulation results. This filter has a cut off frequency at 180 MHz, 0.02 dB ripples in pass band, return loss better than 21 dB in the pass band, 0.2 dB insertion losses, 1.6 dB/MHz shape factor, a 75% miniaturization against conventional structures with distributed elements, and wide out of band rejection. Moreover, 10 and 1 KW are the peak power and the average power handling of the filter. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:605–614, 2014.  相似文献   

7.
A pair of dual mode independent controllable resonators used to realize dual band pass filter with good frequency selectivity and isolation is presented. The resonators are directly connected to input/output and are coupled through electric and magnetic coupling in two different paths. Magnetic coupling between the resonators is achieved using a common grounded via‐hole between the two set of quarter‐wavelength resonators. Electric coupling is achieved through open edge coupling of the resonators. Two independent resonators with Separate Electric and Magnetic Coupling (SEMC) paths produce an independently controllable dual band filter response and also additional transmission zeros (TZs) at the edges of the pass bands. The TZs are introduced to improve the selectivity of the filter. Filter exhibits desired pass band response at the Universal Mobile Telecommunications System (UMTS) band (1.95‐2.2 GHz) and Worldwide Interoperability for Microwave Access (WiMAX) band (3.4‐3.6 GHz). Proposed compact filter is implemented on RT/Duroid 5880 (εr = 2.2) substrate with thickness of 0.785 mm and surface area of 15 × 12 sq. mm.  相似文献   

8.
Four‐stage stepped‐impedance resonator (FSSIR) is proposed and its resonant characteristics are analyzed in detail. The formulas of the first four resonances are deduced and the optimization techniques are presented on the basis of the impedance ratios. A quad‐band bandpass filter with third‐order filtering response in each passband is synthesized and designed as a demonstration of the application of the proposed FSSIR. Thanks to the cross‐coupling topology and skew‐symmetrical feeding configuration, multiple transmission zeros have been generated out of the passbands. Additionally, the frequency and the couplings of each passband can be flexibly controlled, respectively.  相似文献   

9.
This work explores potential errors arising in the application of modern computer‐aided engineering (CAE) software to the simulation of RF‐communication system hardware. A hardware set comprising a 915‐MHz transmitter and a corresponding 915‐MHz receiver is analyzed by comparing system‐level simulations from commercially available software to various linear and nonlinear performance measurements. It is shown that after the determination of the subsystem computer‐aided design parameters using the measured component behavior, good predictions of in‐band performance can be achieved for all analog parameters examined. Discrepancies, in some cases significant ones, are revealed in the out of band response predictions of the output frequency spectral content caused by system nonlinearities. Ideal filter and mixer models, in particular, are shown to be inadequate for high accuracy system simulation work. © 2003 Wiley Periodicals, Inc. Int J RF and Microwave CAE 13: 86–100, 2003.  相似文献   

10.
This article presents a design of compact ultra‐wideband (UWB) bandpass filter with a narrow notched band. The UWB frequency responses are achieved by using a microstrip–CPW broadside coupling structure. And a pair of side‐coupled short‐circuited microstrip lines is introduced to generate a narrow notched band. Based on this design, by loading a pair of varactor diodes at the end of the side‐coupled short‐circuited microstrip lines, a reconfigurable notched‐band UWB filter can also be obtained, which can avoid the existing interferences such as 5.8 GHz wireless local‐area network signals and 6.8 GHz RF identification communication systems signals and in the UWB frequency range. Commercial software ANSYS HFSS is used to analyze and design this filter. Simulated results show that it has good filtering performances, compact size, and notched‐band reconfigurability.  相似文献   

11.
A compact realization of composite low‐pass filter is presented in this article. The filter is realized using on‐chip spiral inductors and metal–insulator–metal capacitors and features an attenuation pole near the cutoff frequency leading to a sharper attenuation response. As well, it offers good matching properties in the passband. Space‐mapping‐based algorithm is used in the design/optimization of spiral inductors toward achieving high quality factors at the filter cutoff frequency. The realization of the proposed filter is compact in size, suitable for monolithic microwave integrated circuit applications, and exhibit broad upper stopband frequency characteristics. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2012.  相似文献   

12.
In this article, a novel single negative metamaterial (MTM) transmission line (TL) consisting of a Hilbert‐shaped complementary ring resonator (H‐CRR) on the ground plane is initially presented and studied in depth. Then based on the proposed MTM TL, a novel six‐section Hi‐Lo microstrip low‐pass filter (LPF) with a cut‐off frequency 2.5 GHz is developed, fabricated, and measured. Measurement results indicate that: by integrating H‐CRR, the selectivity has been significantly improved which is 77.3 dB/GHz due to the single negative permittivity; by etching a crown square on low‐impedance section, the bandwidth characterized by 20 dB return loss was obviously enhanced by 26.2% and the maximal sidelobe level of in‐band return loss was reduced from 22 to 24.6 dB. What' more, the developed LPF achieved a 36.3% size reduction with respect to its conventional counterpart. The design concept, which was confirmed by the measurement data, is of practical value and can be popularized in other microwave devices where high selectivity is requested. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2011.  相似文献   

13.
This article designed a five‐order narrow‐band tunable superconducting filter. The superconducting microstrip circuit was loaded by varactors diode. The center frequency of the tunable can be tuned through the changing of the bias voltage added in the varactors diode. The whole device has a parallel coupling structure and the filter circuit was fabricated by DyBa2Cu3O7 superconducting film with 0.5 mm thickness and 2 in. LaAlO3 as the substrate. The frequency can be continuously adjusted from 235 MHz to 250 MHz. The insertion loss of the filter was in the range of 2.51 dB to 9.64 dB. The bandwidth of the tunable filter was in the range of 0.5 MHz to 0.9 MHz. The out‐of‐band rejection was better than 70 dB. The measured results are in good agreement with the simulated ones.  相似文献   

14.
This study presents a wideband bandpass filter (WBBPF) with wide and high stopband suppression by loading a stepped‐impedance resonator (SIR). The prototype of WBBPF is composed of an inverted π‐shaped resonator with T‐shaped resonator and open stub loaded, centrally. Odd‐/even‐mode analysis technique is employed to characterize the resonant properties of this prototype. Then, a SIR is loaded to this filter, asymmetrically, to improve the out‐of‐band performance. For experimental validation, a WBBPF is designed, fabricated, and tested. The measurement results show that the center frequency of WBBPF is located at 5.095 GHz, and the 3‐dB fraction bandwidth is about 71%. Plus, the out‐of‐band suppression with 30‐dB rejection level can be extended to 18.17 GHz.  相似文献   

15.
A frequency reconfigurable third‐order bandpass filter based on two substrate integrated waveguide (SIW) cavities is presented in this article. The purposed filter consists of a dual‐mode square‐shaped resonator and a triangular‐shaped resonator. In the square‐shaped cavity, four lumped capacitors are loaded as electrical tuning elements in the area where the electric fields of diagonal TE201 and TE102 modes are strongest. And an another capacitor is loaded at the suitable region of the triangular‐shaped cavity. Square‐shaped cavity introduces two transmission zeros and the triangular‐shaped cavity can suppress out‐of‐band spurious modes. The method that combines the resonators with different shapes and multiple modes into an organic whole cannot only achieve synchronous tuning but also have complementary advantages and improve out‐of‐band rejection. To verify its practicality, a SIW reconfigurable bandpass filter is simulated when the capacitance value varies from 0 to 1.4 pF and measured at 0.7, 0.8, and 0.9 pF, respectively. Measured results show that when the center frequency is tuned from 3.42 to 3.52 GHz, the proposed filter exhibits good tuning performance with insertion loss of less than 2.5 dB and return loss of better than 10 dB, which is suitable for fifth‐generation communication system.  相似文献   

16.
A printed dual‐band filtering antenna with decent frequency selectivity at 2.45 and 5.2 GHz for wireless local area network (WLAN) applications is developed. The filtering antenna is compact, which comprises a tapped feed line, two dual‐band stub‐loaded open‐loop resonators, and a dual‐band bended monopole. It can be easily printed on a single layer PCB substrate with low profile and low cost. The entire structure is very simple compared with the previously reported dual‐band filtering antennas that requiring multi‐layer structures. The monopole functions as not only a radiator, but also the last resonator of a dual‐band filter. The developed antenna exhibits good frequency selectivity and out‐of‐band suppression. In addition, the two operation bands can be adjusted relatively individually. The proposed antenna is optimized and fabricated. The experimental results show it has good frequency selectivity at both 2.45 and 5.2 GHz, wide bandwidth 11.8% and 7.8%, and excellent out‐of‐band suppression.  相似文献   

17.
Substrate integrated waveguide (SIW) is a new structure for microwave transmission. In this paper, a planar folded sixth‐order SIW filter is designed with aggressive space mapping (ASM) algorithm. Its center frequency is 22 GHz, 3 dB bandwidth 1 GHz, and in‐band return loss 22 dB. The filter satisfies design specifications after four iterations, and is fabricated using micro‐electro‐mechanical systems (MEMS) technology with a chip size of 7.5 mm × 8.5 mm × 0.4 mm. Measurement results show that the center frequency of the filter measures at 22.2 GHz, 3 dB bandwidth at 1 GHz, insertion loss at 3.57 dB, return loss at 22 dB and out‐of‐band rejection at 40 dB.  相似文献   

18.
A novel band‐stop filter with single‐loop split ring resonators (SRRs) is proposed for spoof surface plasmon polaritons (SPPs) at millimeter wave frequencies, achieving a miniaturized size of 0.052λ0 × 0.278λ0 at its resonant frequency. The SRRs provide both a low‐pass response as the rectangular corrugations used in the conventional SPPs and an additional band‐stop response induced by the resonance of SRRs. To verify this design, a back‐to‐back device with two coplanar waveguides as the input and output feeding was fabricated and characterized, the measured S‐parameters of which agree well with the simulation. The measured stop band is centered at 49 GHz with a ?10‐dB bandwidth of 4.1 GHz and a high Q‐factor of 93, in which the maximum attenuation is 31 dB. The filter has a low insertion loss of less than 2.8 dB in the pass band. Such approaches may find many applications to achieve compact millimeter wave circuits.  相似文献   

19.
This article proposes an analytical design methodology for dual‐band hybrid couplers and baluns structures for any arbitrary frequency ratio using a stub‐loaded transmission line. An analysis of changing the impedance behavior of the stub, is carried out for the two bands of operation, which along with a dispersive analysis, emphasizes certain conditions where the existing methodology is not applicable. In addition, an extra degree of freedom has been included to increase the solutions for a given frequency ratio, thus providing greater flexibility and feasibility of the proposed structure. The design methodology is experimentally validated with the design and fabrication of dual‐band branch‐line and rat‐race couplers for various commercial frequency bands. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE , 2011.  相似文献   

20.
A compact, band‐pass filter utilizing multi‐element resonators, structured from sections of distributed transmission lines, is presented. A band‐pass filter design procedure is established that emphasizes CAD techniques to characterize the individual resonators and to determine the resonator coupling values required for a specified pass‐band response. Detailed band‐pass filter design examples are illustrated and simulation results are employed to validate the design procedure. © 2003 Wiley Periodicals, Inc. Int J RF and Microwave CAE 13, 447–458, 2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号