首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fully degradable natural fiber/degradable polymer composites have received much research attention and have various applications such as in automotive components. But flammability limits their application; it is important to improve the flame retardancy of fully degradable composites with environmentally friendly flame retardants. Flame‐retarded ramie fiber‐reinforced poly(lactic acid) (PLA) composites were prepared using three processes: (1) PLA was blended with ammonium polyphosphate (APP), and then the resulting flame‐retarded PLA was combined with ramie fibers; (2) ramie fibers underwent flame‐retardant treatment with APP, which were then compounded with PLA; and (3) PLA and ramie, both of which had been flame‐retarded using APP, were blended together. The APP in the composites is shown to be very effective in improving flame retardancy according UL94 test and limiting oxygen index measurements. Thermogravimetric analysis shows that the improved flame retardancy is due to increased char residue at high temperature. The loading of APP disturbs the compatibility between PLA and fibers, which can be directly observed using scanning electron microscopy. Furthermore it has an influence on the dynamic mechanical properties and mechanical properties according dynamic mechanical analysis and mechanical measurements. The results show that composites produced using the third process not only have the best flame retardancy but also comparatively better mechanical properties. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
This work aims to develop the poly(lactic acid) (PLA) biocomposites with high flame‐retardant performance, which can be applied in electronic and electrical devices as well as automotive parts. First, an intumescent flame retardant composed of ammonium polyphosphate (APP) as the acid source and the blowing agent, and the distiller's dried grains with solubles (DDGS) as the natural charring agent was designed. The surfaces of DDGS and APP were coated by degradable polymeric flame‐retardant resorcinol di(phenyl phosphate) (RDP), and the coating effects were analyzed. And then the flame‐retardant biocomposites of PLA with RDP‐coated DDGS (C‐DDGS) and RDP‐coated APP (C‐APP) were prepared. The limited oxygen index value of the biocomposites with loading of 15 wt% C‐DDGS and 15 wt% C‐APP reached 32.0%, and UL‐94 V‐0 was attained. The biocomposites also had good mechanical properties and the tensile strength of this sample reached about 57 MPa. Finally, the char residues after burning were analyzed and the flame‐retardant mechanism was discussed.  相似文献   

3.
Poly(diphenolic acid‐phenyl phosphate) [poly(DPA‐PDCP)], obtained from diphenolic acid (a well‐known biomass chemical), was used together with polyethylenimine (PEI) to construct a flame retardant surface coating for ramie fabric using layer‐by‐layer self‐assembly. Attenuated total reflection Fourier transform infrared spectroscopy (ATR‐FTIR) and scanning electron microscope (SEM) equipped with an energy dispersive X‐ray spectrometer (EDX) were used to confirm the successful formation of layer by layer assembly. Assessment of the thermal and flammability properties for poly(DPA‐PDCP)/PEI‐coated ramie fabrics showed that the thermal stability, flame retardancy, and residual char were enhanced as the concentration of poly(DPA‐PDCP) and the BL number in the LbL process increased as well as the treatment of KH550 was applied. SEM and EDX analysis of the char residue confirmed further the intumescent flame retardant mechanism. This work demonstrated the great potentials of poly(DPA‐PDCP)/PEI flame retardant nanocoating constructed by LbL assembly method in the application of ramie fabric. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44795.  相似文献   

4.
Enhancing the stability of plasticized poly(L ‐lactic acid) (PLLA) with poly (ethylene glycol) (PEG) is necessary for its practical application. In this study, plasticized PLLA (PLLA/PEG 80/20 wt/wt) was crosslinked under γ‐ray (Co60) in the presence of triallyl isocyanurate (TAIC) as crosslinking agent. FTIR analysis revealed that PLLA, PEG, and TAIC formed a cocrosslinking structure. Crystallization behavior and mechanical properties of the crosslinked plasticized PLLA were investigated by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), scanning electron microscopy (SEM), and tensile tests. Experimental results indicated that the crystallization behaviors of both PEG and PLLA in the blends were restrained after irradiation. The melting peak of PEG in the crystallized samples disappeared at a low irradiation doses about 10 kGy. Although PLLA still owned the behavior of crystallize, its cold crystallization temperature and glass transition temperature shifted to higher temperature. Mechanical properties of the plasticized PLLA were strengthened through crosslinking. Both yield strength and elastic modulus of the samples increased after crosslinking. Elongation at break of the crosslinked plasticized PLLA decreased with the increase of crosslinking density but remained a high value over 200%. SEM images of fracture surfaces confirmed that the ductile fracture behavior of plasticized PLLA was kept after suitable crosslinking. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Considering the massive waste silicone rubber composites (WSiRC) in electrical and electronic engineering industries every year, the utilization of WSiRC is a meaningful and urgent task. In this study, WSiRC was utilized after a simple treatment in the flame retardant polylactic acid (PLA). The TG data in N2 indicated that the char residues at 700 °C of the PLA/ammonium polyphosphate(APP)/WSiRC samples are improved with the loading of WSiRC, which means that WSiRC could act as the carbonization promoter for the PLA blends. Moreover, it is found in LOI, UL94, and cone tests that WSiRC can only improve the flame retardancy of PLA in an appropriate loading range since the crosslink structure formed by WSiRC may interact with that formed by APP and jointly improve the char‐formation ability of PLA. However, too much WSiRC deteriorated the flame retardancy of PLA because of the effect of WSiRC cluster at its higher loading. The photographs of the char residue after the cone tests also manifested that. The cone data showed that WSiRC could suppress the production of smoke as well. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45231.  相似文献   

6.
Random copolyester namely, poly(ethylene terephthalate‐co‐sebacate) (PETS), with relatively lower molecular weight was first synthesized, and then it was used as a macromonomer to initiate ring‐opening polymerization of l ‐lactide. 1H NMR quantified composition and structure of triblock copolyesters [poly(l ‐lactic acid)‐b‐poly(ethylene terephthalate‐co‐sebacate)‐b‐poly(l ‐lactic acid)] (PLLA‐PETS‐PLLA). Molecular weights of copolyesters were also estimated from NMR spectra, and confirmed by GPC. Copolyesters exhibited different solubilities according to the actual content of PLLA units in the main chain. Copolymerization effected melting behaviors significantly because of the incorporation of PETS and PLLA blocks. Crystalline morphology showed a special pattern for specimen with certain composition. It was obvious that copolyesters with more content of aromatic units of PET exhibited increased values in both of stress and modulus in tensile test. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
This article investigated the effects of electron beam (EB) irradiation on poly(D ,L ‐lactic acid)‐b‐poly(ethylene glycol) copolymer (PLEG) and poly(L ‐lactic acid) (PLLA). The dominant effect of EB irradiation on both PLEG and PLLA was chain scission. With increasing dose, recombination reactions or partial crosslinking of PLEG can occur in addition to chain scission, but there was no obvious crosslinking for PLLA at doses below 200 kGy. The chain scission degree of irradiated PLEG and PLLA was calculated to be 0.213 and 0.403, respectively. The linear relationships were also established between the decrease in molecular weight with increasing dose. Elongation at break of the irradiated PLEG and PLLA decreased significantly, whereas the tensile strength and glass transition temperature of PLLA decreased much more significantly compared with PLEG. The presence of poly(ethylene glycol) (PEG) chain segment in PLEG was the key factor in its greater stability to EB irradiation compared with PLLA. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
A series of organic‐inorganic hybrid films were prepared based on octa(3‐chloropropylsilsesquioxane) (OCPS) and poly(L‐lactic acid) (PLLA) via simply solution blending method. The thermal, crystalline and mechanical properties of OCPS/PLLA hybrid films were characterized by Fourier transform infrared, scanning electron microscopy, energy dispersive spectrometer, differential scanning calorimetry (DSC), X‐ray diffraction, polarized optical microscopy, thermogravimetric analysis (TGA), and tensile tests. The results showed that OCPS could be dispersed well at molecular level when its content was less than 3 wt % and began to crystallize in PLLA matrix when the content increased to 5 wt %. DSC study revealed that OCPS acted as a plasticizer to decrease both Tg and Tm of the PLLA matrix at various heating rates. The addition of OCPS did not change the crystal form of PLLA, while had an great influence on the cold crystallization and melting behaviors of PLLA in the second heating cycles. Moreover, the initial crystallinity of OCPS/PLLA was higher than that of pure PLLA. The results suggested that OCPS could be an effective heterogeneous nucleating reagent to promote the crystallization of PLLA. TGA showed that the PLLA thermal degradation mechanism remained unchanged, whereas the weight loss temperatures and residual weights were improved. Tensile tests indicated that the incorporation of OCPS into PLLA matrix changed the tensile behavior of the hybrid films from brittle to ductile, and the strain at break was improved remarkably as a result of the plasticizer effect of OCPS. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Optically active poly(L ‐phenyllactic acid) (Ph‐PLLA), poly(L ‐lactic acid) (PLLA), and poly(L ‐phenyllactic acid‐co‐L ‐lactic acid) with weight‐average molecular weight exceeding 6 × 103 g mol?1 were successfully synthesized by acid catalyzed direct polycondensation of L ‐phenyllactic acid and/or L ‐lactic acid in the presence of 2.5–10 wt % of p‐toluenesulfonic acid. Their physical properties and crystallization behavior were investigated by differential scanning calorimetry, thermogravimetry, and polarimetry. The absolute value of specific optical rotation ([α]) for Ph‐PLLA (?38 deg dm?1 g?1 cm3) was much lower than that of [α] for PLLA (?150 deg dm?1 g?1 cm3), suggesting that the helical nature was reduced by incorporation of bulky phenyl group. PLLA was crystallizable during solvent evaporation, heating from room temperature, and cooling from the melt. Incorporation of a very low content of bulky phenyllactyl units even at 4 mol % suppressed the crystallization of L ‐lactyl unit sequences during heating and cooling, though the copolymers were crystallizable for L ‐phenylactyl units up to 6 mol % during solvent evaporation. The activation energy of thermal degradation (ΔEtd) for Ph‐PLLA (200 kJ mol?1) was higher than that for PLLA (158 kJ mol?1). The ΔEtd for the copolymers increased with an increase in L ‐phenyllactyl unit content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Poly(vinyl acetate) (PVAc) was added to the crystalline blends of poly(ethylene oxide) (PEO) and poly(L ‐lactide) (PLLA) (40/60) of higher molecular weights, whereas diblock and triblock poly(ethylene glycol)–poly(L ‐lactide) copolymers were added to the same blend of moderate molecular weights. The crystallization rate of PLLA of the blend containing PVAc was reduced, as evidenced by X‐ray diffraction measurement. A ringed spherulite morphology of PLLA was observed in the PEO/PLLA/PVAc blend, attributed to the presence of twisted lamellae, and the morphology was affected by the amount of PVAc. A steady increase in the elongation at break in the solution blend with an increase in the PVAc content was observed. The melting behavior of PLLA and PEO in the PEO/PLLA/block copolymer blends was not greatly affected by the block copolymer, and the average size of the dispersed PEO domain was not significantly changed by the block copolymer. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3618–3626, 2001  相似文献   

11.
Nanosized calcium carbonate (nano‐CaCO3)‐filled poly‐L ‐lactide (PLLA) biocomposites were compounded by using a twin‐screw extruder. The melt flow behavior of the composites, including their entry pressure drop, melt shear flow curves, and melt shear viscosity were measured through a capillary rheometer operated at a temperature range of 170–200°C and shear rates of 50–103 s?1. The entry pressure drop showed a nonlinear increase with increasing shear stress and reached a minimum for the filler weight fraction of 2% owing to the “bearing effect” of the nanometer particles in the polymer matrix melt. The melt shear flow roughly followed the power law, while the effect of temperature on the melt shear viscosity was estimated by using the Arrhenius equation. Hence, adding a small amount of nano‐CaCO3 into the PLLA could improve the melt flow behavior of the composite. POLYM. ENG. SCI., 52:1839–1844, 2012. © 2012 Society of Plastics Engineers  相似文献   

12.
Poly(L ‐lactic acid) (PLLA) has good biocompatibility, biodegradability and physical properties. However, one of the drawbacks of PLLA is its brittleness due to the stiff backbone chain. In this work, a largely improved tensile toughness (extensibility) of PLLA was achieved by blending it with poly(ε‐caprolactone) (PCL). To obtain a good dispersion of PCL in the PLLA matrix, blends were prepared via a solution‐coagulation method. An increase in extensibility of PLLA of more than 20 times was observed on adding only 10 wt% of PCL, accompanied by a slight decrease in tensile strength. However, annealing of the samples led to a sharp decrease of extensibility due to phase separation and a change of crystalline structure. To conserve the good mechanical properties of PLLA/PCL blends, the blends were crosslinked via addition of dicumyl peroxide during the preparation process. For the crosslinked blend films, the extensibility was maintained nearly at the original high value even after annealing. Morphological analysis of cryo‐fractured and etched‐smoothed surfaces of the PLLA/PCL blends was carried out using scanning electron microscopy. Differential scanning calorimetry and polarized light microscopy experiments were used to check the possible change of crystallinity, melting point and crystal morphology for both PLLA and PCL after annealing. The results indicated that the combination of solution‐coagulation and crosslinking resulted in a good and stable dispersion of PCL in the PLLA matrix, which is considered as the main reason for the observed improvement of tensile toughness. Copyright © 2010 Society of Chemical Industry  相似文献   

13.
Poly(l ‐lactic acid) (PLLA) is a good biomedical polymer material with wide applications. The addition of poly(ethylene glycol) (PEG) as a plasticizer and the formation of stereocomplex crystals (SCs) have been proved to be effective methods for improving the crystallization of PLLA, which will promote its heat resistance. In this work, the crystallization behavior of PEG and PLLA/poly(d ‐lactic acid) (PDLA) in PLLA/PDLA/PEG and PEG‐b‐PLLA/PEG‐b‐PDLA blends has been investigated using differential scanning calorimetry, polarized optical microscopy and X‐ray diffraction. Both SCs and homocrystals (HCs) were observed in blends with asymmetric mass ratio of PLLA/PDLA, while exclusively SCs were observed in blends with approximately equal mass ratio of PLLA/PDLA. The crystallization of PEG was only observed for the symmetric blends of PLLA39k/PDLA35k/PEG2k, PLLA39k/PDLA35k/PEG5k, PLLA69k/PDLA96k/PEG5k and PEG‐b‐PLLA31k/PEG‐b‐PDLA27k, where the mass ratio of PLLA/PDLA was approximately 1/1. The results demonstrated that the formation of exclusively SCs would facilitate the crystallization of PEG, while the existence of both HCs and SCs could restrict the crystallization of PEG. The crystallization of PEG is related to the crystallinity of PLLA and PDLA, which will be promoted by the formation of SCs. © 2017 Society of Chemical Industry  相似文献   

14.
Blends of poly(L ‐lactic acid) (PLA) and poly(butylene succinate) (PBS) were prepared with various compositions by a melt‐mixing method and the phase behavior, miscibility, and morphology were investigated using differential scanning calorimetry, wide‐angle X‐ray diffraction, small‐angle X‐ray scattering techniques, and polarized optical microscopy. The blend system exhibited a single glass transition over the entire composition range and its temperature decreased with an increasing weight fraction of the PBS component, but this depression was not significantly large. The DSC thermograms showed two distinct melting peaks over the entire composition range, indicating that these materials was classified as semicrystalline/semicrystalline blends. A depression of the equilibrium melting point of the PLA component was observed and the interaction parameter between PLA and PBS showed a negative value of ?0.15, which was derived using the Flory–Huggins equation. Small‐angle X‐ray scattering revealed that, in the blend system, the PBS component was expelled out of the interlamellar regions of PLA, which led to a significant decrease of a long‐period, amorphous layer thickness of PLA. For more than a 40% PBS content, significant crystallization‐induced phase separation was observed by polarized optical microscopy. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 647–655, 2002  相似文献   

15.
This article contains a detailed calorimetric analysis of the multiple melting behavior of poly(L ‐lactic acid) (PLLA) in dependence of crystallization conditions. PLLA crystals formed upon primary crystallization have a greater tendency to reorganize into more stable structures during the heating scan that leads to fusion. Depending on crystallization temperature, one or multiple melting endotherms and/or reorganization exotherms can be evidenced. This complex melting behavior arises from the fusion of a certain amount of the original crystals (already partially perfected during the heating scan), followed by recrystallization and final melting of more perfect crystals, partly grown during primary crystallization, and partly formed through the reorganization processes occurring during the heating scan. A detailed map of the melting behavior of PLLA is described in this contribution. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3145–3151, 2006  相似文献   

16.
The aim of this study is to improve the flame resistance and toughness of poly(lactic acid) (PLA) with the addition of low amount of flame retardant fillers and plasticizer simultaneously. Poly(ethylene glycol) (PEG) was used as plasticizer for PLA. Ammonium polyphosphate, boron phosphate, and tri‐phenyl phosphate (TPP) were used as flame retardant additives. Among these flame retardant additives, boron phosphate was synthesized from its raw materials by using microwave heating technique. Characterization of PLA/PEG‐based flame retardant composites was performed by conducting tensile, impact, differential scanning calorimeter, thermal gravimetric analysis, scanning electron microscope, limiting oxygen index, and UL‐94 vertical burning tests. Mechanical tests showed that the highest tensile strength, impact strength, and elongation at break values were obtained with the addition of ammonium polyphosphate and TPP into PLA/PEG matrix, respectively. Scanning electron microscopy analysis of the composites exhibited that the more homogeneous filler distribution in the matrix was observed for TPP containing composite. The best flame retardancy performance was also provided by TPP when compared with the other flame retardant additives in the plasticized PLA‐based composites.  相似文献   

17.
Poly(L ‐lactic acid) (PLLA)/gelatin blend membranes were prepared by solution casting method and using dimethyl sulfoxide (DMSO) as a cosolvent. Scanning electron microscopy measurement indicated that when the amounts of gelatin in PLLA/gelatin blend membranes are less than 5%, the sizes of phase separation of gelatin are in range of several hundred nanometers. These benefit in retaining the strength of PLLA membranes. X‐ray diffraction analysis revealed that the semicrystalline PLLA became amorphous and the melt temperature of crystalline PLLA changes from 56 to 38°C after it was processed in DMSO solvent. When the content of gelatin is less than 5%, the films not only retain a good mechanical property but also improve the hydrophilicity of PLLA. The molecular motion of PLLA in blend films were also investigated by solid state 13C CP/MAS NMR. On the basis of the result of relaxation times, it was found that the molecular motion of PLLA100 and PLLA/gelatin blends increased when compared with that of original PLLA. It was further verified that semicrystalline PLLA became amorphous. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 269–276, 2006  相似文献   

18.
Poly(L‐lactic acid) (PLLA)‐aligned fibers with diameters in the nano‐ to micrometer size scale are successfully prepared using the electrospinning technique from two types of solutions, different material parameters and working conditions. The fiber quality is evaluated using scanning electron microscopy (SEM) to judge fiber diameter, diameter uniformity, orientation, and appearance of defects or beads. The smoothest fibers, most uniform in diameter and defect free, were found to be produced from 10% w/v chloroform/dimethylformamide solution using an accelerating voltage from 10–20 kV. Addition of 1.0% multiwalled carbon nanotubes (MWCNT) into the electrospinning solution decreases fiber diameter, improves diameter uniformity, and slightly increases molecular chain alignment. The fibers were cold crystallized at 120°C and compared with their as‐spun counterparts. The influences of the crystalline phase and/or MWCNT addition were examined using fiber shrinkage, temperature‐modulated calorimetry, X‐ray diffraction, and dynamic mechanical analysis. Crystallization increases the glass transition temperature, Tg, slightly, but decreases the overall fiber alignment through shrinkage‐induced buckling of the fibers when heated above Tg. MWCNT addition has little impact on Tg, but significantly increases the orientation of crystallites. MWCNT addition slightly reduces the dynamic modulus, whereas crystallization increases the modulus in both neat‐ and MWCNT‐containing fibers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41779.  相似文献   

19.
Acetyl tri‐n‐butyl citrate (ATBC) and poly(ethyleneglycol)s (PEGs) with different molecular weights (from 400 to 10000) were used in this study to plasticize poly(L‐lactic acid) (PLA). The thermal and mechanical properties of the plasticized polymer are reported. Both ATBC and PEG are effective in lowering the glass transition (Tg) of PLA up to a given concentration, where the plasticizer reaches its solubility limit in the polymer (50 wt % in the case of ATBC; 15–30 wt %, depending on molecular weight, in the case of PEG). The range of applicability of PEGs as PLA plasticizers is given in terms of PEG molecular weight and concentration. The mechanical properties of plasticized PLA change with increasing plasticizer concentration. In all PLA/plasticizer systems investigated, when the blend Tg approaches room temperature, a stepwise change in the mechanical properties of the system is observed. The elongation at break drastically increases, whereas tensile strength and modulus decrease. This behavior occurs at a plasticizer concentration that depends on the Tg‐depressing efficiency of the plasticizer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1731–1738, 2003  相似文献   

20.
Poly(L ‐lactic acid) (PLLA) foams for tissue engineering were prepared via thermally induced phase separation of a ternary system PLLA/dioxane/tetrahydrofuran (THF) followed by double solvent exchange (water and ethyl alcohol) and drying. An extension to solidification from solution of a previously developed method for solidification from the melt was adopted. The technique is based on a continuous cooling transformation (CCT) approach, consisting in recording the thermal history experienced by rapidly cooled samples and then analyzing the resulting sample morphology. Different foams were produced by changing the relative amount of dioxane and THF in the starting solution while the amount of polymer was kept constant. Results show that the final morphology and crystallinity (measured by DSC) depend on solvent power, which in its turn was determined by the ratio dioxane/THF, and a minimum of pore size, optimum final crystallinity and crystallization rate were achieved for a system containing 70 % of dioxane. Under this condition, a higher bulk density (evaluated by Hg intrusion porosimetry) and a larger specific surface area (measured by BET N2 sorption technique) was achieved. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号