首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
三种无铬封闭方法对铝合金阳极氧化膜耐蚀性的影响   总被引:2,自引:0,他引:2  
研究了沸水封闭、醋酸镍封闭和电压加载下己二酸铵封闭对LY12铝合金阳极氧化膜耐蚀性的影响。通过场发射扫描电镜(FE-SEM)和电化学阻抗谱(EIS)对三种无铬封闭方法处理后铝合金阳极氧化膜的表面微观形貌和耐蚀性进行了研究。结果表明:封闭处理可以有效地闭合阳极氧化膜的微孔,提高氧化膜耐腐蚀性能。电压加载下己二酸铵封闭可以有效缓解氧化膜的腐蚀。三种无铬封闭方法处理后的氧化膜耐腐蚀性能从小到大依次为:沸水封闭,醋酸镍封闭,电压加载下己二酸铵封闭。  相似文献   

2.
The properties of the anodic oxide films formed on titanium and its implant alloys Ti‐5Al‐4V and Ti‐6Al‐4Fe are investigated in this paper. Anodic oxide films were prepared by electrochemical treatment in 3M sulphuric acid solution at 60 V for 1 min, followed by a thermal treatment consisting of heating at 500°C for 24 h and then cooling in water. Electrochemical impedance spectroscopy (EIS) measurements were carried out at open circuit potential. Nyquist and Bode spectra exhibit a two‐time constant system, attesting an oxide with two layers: a barrier inner oxide and a porous outer one. All spectra change in time, indicating a thickening of the films. Open circuit potentials were monitored (long‐term, 25,000 exposure hours) in Ringer 2 solution of different pH values (6.98, 4.35, 2.5) for titanium, Ti5Al‐4V and Ti‐6Al‐4Fe alloy but without treatment with the purpose to compare the biomaterial behaviour. It was pointed out some variations of the open circuit potentials around electropositive values, suggesting slow dissolution, re‐passivation or adsorption processes.  相似文献   

3.
选择酒石酸钠环保电解液,用恒电势法在不同浓度条件(1,5,15,30和50 g/L)下制备TA2纯钛阳极氧化膜。采用原子力显微镜分析膜层的微观三维形貌,使用电化学工作站研究试样在3.5%NaCl溶液低电位下的极化曲线和电化学交流阻抗谱,探讨微观三维形貌对耐腐蚀性能的影响。结果表明:15 g/L浓度时,氧化膜层细小均匀,生长完整,粗糙度较低,具有宽广的钝化区,最大的极化电阻值,较小的致钝电流值和自腐蚀电流值,耐腐蚀性能最佳。  相似文献   

4.
研究纯镁在1.0%NaCl中性溶液中的腐蚀行为及其相应的电化学阻抗谱(EIS)和极化曲线,探讨不同时间段EIS的分形维数。结果表明,腐蚀过程及相应的EIS发展可分为3个阶段。初始阶段,EIS由2个重叠的容抗弧组成,相应的极化电阻及电荷转移电阻随着时间的延长而快速增加,而腐蚀速率则降低。而后,EIS图谱上出现2个容易辨认的容抗弧,电荷转移电阻及腐蚀速率基本保持稳定。长时间浸泡后,EIS图谱中低频部分出现感抗成分,电荷转移电阻降低,而腐蚀速率增加。EIS分形维数与材料表面形貌直接相关,将是分析腐蚀形貌极有用的工具。  相似文献   

5.
The initial corrosion behavior of pure zinc in a simulated tropical marine atmosphere was investigated using gravimetric method, scanning electron microscope combined with energy dispersive spectroscopy (SEM-EDS), X-ray diffractometry (XRD), Fourier transform infrared spectrometry (FTIR) and electrochemical impedance spectroscopy (EIS). The kinetics of corrosion process is a decelerating process following the empirical equation D=Atn (n<1). The protectiveness of the corrosion product layer could be attributed to the formation of simonkolleite, Zn5(OH)8Cl2·H2O, which could inhibit the rate determining step, namely charge transfer step, of the electrochemical corrosion process. A model of the evolution process of the product layers formed on zinc was proposed. In addition, the regularity of the corrosion rate of zinc as a function of the NaCl deposition rate can be described by a power function.  相似文献   

6.
工业纯钛高温拉伸断裂极限   总被引:1,自引:0,他引:1  
拉伸断裂极限值是预测零件高温裂纹的主要依据。为了研究工业纯钛在高温拉伸下的断裂极限,采用理论模型和试验相结合的方法,通过GFL(Gleeble fracture limit)试验测得工业纯钛在不同温度下的真应力-应变曲线,并利用真应力-应变曲线求得工业纯钛的断裂极限值,分析了温度和应变速率对断裂极限值的影响。结果表明,温度和应变速率对断裂极限值有较大影响。温度升高使断裂极限增加,在应变速率为0.1 s-1下随着温度从800℃升高到1000℃,断裂极限值从1.798增加到2.343;在900℃相同温度下,随着应变速率从0.01 s-1的提高到1 s-1,断裂极限值从2.496降低到1.745。  相似文献   

7.
This study deals with the anodisation of titanium grade 2 in 0.5-M sulphuric acid using a pulsed signal in a unipolar regime. The electrical parameters investigated are voltage, frequency and duty cycle. The use of duty cycles with a high percentage of anodic polarisation (90%), combined with high frequencies (1000 Hz) and the higher voltage tested (220 V), favoured the establishment of a plasma regime involving strong dielectric discharges, allowing the growth of thicker oxides but with rough architecture. The corrosion resistance of the formed film has been characterised by potentiodynamic tests in 0.5-M NaBr for localised corrosion resistance and by immersion tests in 10% v/v sulphuric acid solution for a uniform corrosion assessment. Current–time curves, visual observations and electron microscope analysis (scanning electron microscopy, energy-dispersive X-ray spectroscopy) were the tools selected to provide a correlation between technological parameters and oxide growth mechanism. For localised and uniform corrosion, anodisation at 220 V with a high level of anodic polarisation (90%) and frequency (1000 Hz) was verified to be particularly advantageous.  相似文献   

8.
9.
10.
Potassium iodide was studied for its corrosion inhibition property on the corrosion of dual‐phase steel in 0.5 M sulfuric acid at 25°C by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Scanning electron microscopy was used to characterize the steel surface. The inhibition efficiency increases with the concentration of iodide ions. The thermodynamic parameters Kads and ΔG0ads are calculated and discussed. The probable inhibitive mechanism is proposed from the viewpoint of adsorption theory.  相似文献   

11.
In this work, a new ternary Ti–25Ta–5Zr alloy (with nontoxic alloying elements) was obtained and used to develop a thermo‐mechanical procedure in order to optimize the balance strength – elastic modulus. Data about structural (by SEM) and mechanical properties are investigated. Also, its electrochemical behaviour in Ringer–Brown and Ringer solutions of different pH values (simulating severe functional conditions of an implant) was studied by cyclic potentiodynamic and linear polarization and electrochemical impedance spectroscopy (EIS). From cyclic potentiodynamic polarization curves it resulted the nobler behaviour of the thermo‐mechanical treated alloy than as‐cast alloy due to the favourable influence of the applied processing. Impedance spectra were fitted with one time constant equivalent circuit characterizing a very stable, resistant oxide passive film. The values of the open circuit potentials for the treated alloy are nobler than of the as‐cast alloy and tended to more positive values in time, proving that the passive film on its surface is more compact and thickened in time.  相似文献   

12.
Aluminizing is an effective method to protect alloys from oxidation and corrosion. In this article, the microstructure, morphology, phase composition of the aluminized layers and the oxide films were investigated by SEM, EDS and X-ray diffraction. The high temperature oxidation resistance and electrochemical behavior of hot dip aluminizing coatings on commercial-purity titanium had been studied by cyclic oxidation test and potentiodynamic polarization technique. The results show that the reaction between the titanium and the molten aluminum leads to form an aluminum coating which almost has the composition of the aluminum bath. After diffusion annealing at 950 °C for 6 h, the aluminum coating transformed into a composite layer, which was composed of an inner layer and an outer layer. The inner layer was identified as Ti3Al or Ti2Al phase, and the outer layer was TiAl3 and Al2O3 phase. The cyclic oxidation treatment at 1000 °C for 51 h shows that the oxidation resistance of the diffused titanium is 13 times more than the bare titanium. And the formation of TiAl3, θ-Al2O3 and compact α-Al2O3 at the outer layer was thought to account for the improvement of the oxidation resistance at high temperature. However, the corrosion resistance of the aluminized titanium and the diffused titanium were reduced in 3.5 wt.% NaCl solution. The corrosion resistance of the aluminized titanium was only one third of bare titanium. Moreover, the corrosion resistance of the diffused titanium was far less than bare titanium.  相似文献   

13.
The exfoliation corrosion susceptibility and electrochemical impedance spectroscopy (EIS) of 7150 Al alloys with T6, T73, and RRA (retrogression at 175 °C for 3 h) tempers in EXCO solution were investigated. The anodic equilibrium precipitate η(MgZn2) is continuous or closely spaced at the grain boundaries in the 7150‐T6 Al alloy, resulting in its greatest susceptibility to exfoliation corrosion. The grain boundary η precipitates in the RRA and T73 treated 7150 Al alloys are coarsened and show a clear discontinuous nature; they possess similar exfoliation corrosion sensitivity and their exfoliation corrosion resistance is greatly increased. At the beginning of immersion in EXCO solution, the EIS plot of the 7150 Al alloys is composed of a capacitive arc in the high to medium frequency range and an inductive component in the medium to low frequency range. As immersion time is increased, exfoliation corrosion with different corrosion ratings occurs on the surface of the 7150 Al alloy with various tempers, two capacitive arcs appear in the high to medium and medium to low frequency ranges, respectively. The fitted medium to low frequency capacitance C2 of 7150‐T6 Al alloy, corresponding to the new surface caused by the exfoliation corrosion, is much greater than that of the T73 and RRA treated 7150 Al alloy, which is consistent with the greatest exfoliation corrosion susceptibility of the 7150‐T6 Al alloy.  相似文献   

14.
Smooth polypyrrole (PPy) films were successfully electrosynthesized on a stainless steel (SS, 1Cr18Ni9) surface by a self‐catalytic two‐step process. SS substrate dissolution during PPy electrosynthesis was effectively depressed. The redox properties and corrosion behavior of PPy film coated SS electrodes were investigated by cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization. The reduction of PPy was found to include two reaction processes: an anion dedoping process and a cation insertion process. The PPy film was found to lose its electroactivity when polarized at high potentials due to peroxidation. EIS of SS/PPy mainly corresponds to PPy film response and charge transfer resistance decreases as film thickness increases, indicating that SS corrosion can be inhibited effectively by the PPy film.  相似文献   

15.
Anti‐corrosive composite cerium oxide/titanium oxide (CeO2/TiO2) thin films were successfully prepared on an AZ91D magnesium alloy substrate by applying cerium oxide (CeO2) thin films as the inner layer with a sol–gel process. Composition and surface morphology of the thin films were analyzed using X‐ray diffraction (XRD) and scanning electron microscope (SEM). XRD showed that the composite films consisted of cerianite and anatase phases. The wettability of the thin films was evaluated by water contact angles measurements. Potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) tests were used to evaluate the corrosion behavior of the bare substrate and coated samples in 3.5 wt% sodium chloride solution (3.5 wt% NaCl). The results demonstrated that titanium oxide (TiO2) thin film mainly dominated the corrosion resistance of samples and the composite films with excellent hydrophilicity could significantly improve the corrosion resistance of AZ91D magnesium alloy.  相似文献   

16.
In this study, a new Ti‐25Ta‐25Nb (mass%) β alloy was synthesised by cold crucible semi‐levitation melting. After melting, each ingot was solution treated in the β‐phase domain and water quenched in order to obtain a fully recrystallised homogeneous β‐phase microstructure. To evaluate the bio‐corrosion property of this new alloy, corrosion tests (cyclic potentiodynamic and linear polarisation, EIS) and surface analysis (SEM) were carried out in Ringer solution at different pH values (acid, neutral and basic). The results indicated that the corrosion resistance of the Ti‐25Ta‐25Nb alloy is quite higher than that of the commercially pure CP Ti alloy. These results show that this new alloy possesses all the characteristics necessary for its long‐term use as medical implants.  相似文献   

17.
In the present study, a nanoceramic hexafluorozirconic acid was used as an eco‐friendly conversion coating, which is free of the conventional phosphate salts. The effect of practical parameters on morphology and corrosion resistance of the coating was studied. Anti‐corrosion behavior of the nanoceramic‐based conversion coating on cold rolled steel substrates was evaluated at different solution pH and temperatures, utilizing the electrochemical impedance spectroscopy and direct current polarization. Moreover, the morphology of thin films was studied using field emission scanning electron microscopy (FE‐SEM). The results revealed that the conversion thin films formed at a dipping temperature of 20 °C and pH 4.5 showed best anti‐corrosion performance. SEM images indicated that increasing solution temperature resulted in micro‐cracks creation and lack of consistency on the surface of the conversion coating. Moreover, the morphological structure changed with increasing pH value.  相似文献   

18.
The effect of fluoride ion concentration and pH on the corrosion behavior of TCA (60 Ti 10 Ag 30 Cu), which is a new Ti alloy with low melting point, pure Titanium (Ti), and TAV (TiAl6V4) was examined using open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) at different potentials. Results show that the corrosion resistance of TCA and Ti decrease at anodic potentials compared with results obtained at OCP. At one potential the corrosion resistance decrease depends on NaF concentration and pH. TAV shows less resistance against corrosion in fluoride containing saliva. TCA has potentials more positive than Ti and TAV due to surface enrichment of Cu and Ag as Ti dissolves which accelerates the cathodic reaction. Fluoride ion may not hinder the growth of oxide layers on the surfaces of the electrodes. It will have influence on the properties of the oxide layer causing them to be not protective against corrosion in acid media containing fluoride ions.  相似文献   

19.
采用SEM方法研究不同温度固溶处理的690合金组织结构,利用动电位极化、电化学阻抗和局部电化学交流阻抗(LEIS)等方法研究了其在NaOH溶液中的电化学行为。SEM结果表明,固溶处理温度1095℃的690合金的晶粒较大,晶界上分布着连续的碳化物。极化曲线结果表明,固溶处理温度1090℃的690合金在氢氧化钠溶液中的电流密度最大;电化学阻抗表明,固溶处理温度1100℃的690合金在氢氧化钠溶液中的阻抗模值较大。局部电化学交流阻抗谱表明,不同温度固溶处理的690合金在氢氧化钠溶液中的电化学阻抗具有明显不同的分布特征。  相似文献   

20.
The inhibitive action of the four surfactants, cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate, sodium oleate and polyoxyethylene sorbitan monooleate (TWEEN-80), on the corrosion behavior of copper was investigated in aerated 0.5 mol dm−3 H2SO4 solutions, by means of electrochemical impedance spectroscopy. These surfactants acted as the mixed-type inhibitors and lowered the corrosion reactions by blocking the copper surface through electrostatic adsorption or chemisorption. The inhibitor effectiveness increased with the exposure time to aggressive solutions, reached a maximum and then decreased, which implies the orientation change of adsorbed surfactant molecules on the surface. CTAB inhibited most effectively the copper corrosion among the four surfactants. The copper surface was determined to be positively charged in sulfuric acid solutions at the corrosion potential, which is unfavourable for electrostatic adsorption of cationic surfactant, CTAB. The reason why CTAB gave the highest inhibition efficiency was attributed to the synergistic effect between bromide anions and positive quaternary ammonium ions. C16H33N(CH3)4+ ions may electrostatically adsorbed on the copper surface covered with primarily adsorbed bromide ions. On the basis of the variation of impedance behaviors of copper in the surfactant-containing solutions with the immersion time, the adsorption model of the surfactants on the copper surface was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号