首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在烷基聚葡糖苷(APG0810)/苯乙烯/水三元体系O/W微乳液中,选用水溶性K2S2O8作为引发剂,制得小粒径(46.6nm)、单分散(P=0.106<0.2)聚苯乙烯颗粒。着重研究了表面活性剂浓度、引发剂浓度以及无机盐浓度对产物粒径和多分散度的影响。最后得出随表面活性剂浓度的增加胶束数目增多,聚合所得颗粒粒径变小(44.3nm),单分散性变差;而随盐浓度的增加聚合物颗粒粒径变小(45.2nm),超过一定浓度时颗粒粒径有增大的趋势;随引发剂浓度的增加聚合物粒径变小(41.2nm)。  相似文献   

2.
Cationic copolymer nanoparticles were prepared by emulsifier-free emulsion polymerization of styrene and n-butyl acrylate, using [2-(methacryoyloxy ethyl] trimethylammonium chloride as the cationic functional comonomer and 2,2′-azobis (2-methypropionamidine) as the cationic initiator. FTIR spectroscopy, 1H-NMR spectroscopy, and GPC were applied to characterize the chemical structure and molecular weight of the obtained copolymer. The size and size distribution of the nanoparticles were characterized through photon correlation spectroscopy. The interaction of nanoparticles with bovine serum albumin (BSA) was investigated by the means of transmission electron microscopy and fluorescence spectroscopy. It was found that the copolymer nanoparticles were monodisperse spheres with the diameter less than 90 nm and can complex well with BSA through electrostatic interaction. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
In this study, silver nanoparticles were prepared by the reduction of silver nitrate in SDS+ isopentanol/styrene/H2O reverse microemulsion system using sodium citrate as reducing agent. The Ag/PS nanocomposite particles were prepared by in situ emulsion polymerization of the styrene system containing silver nanoparticles that did not separate from the reaction solution. The polymerization dynamic characteristic was studied, at the same time, silver nanparticles and the encapsulation of composite particles were characterized by Fourier‐transform‐infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X‐ray diffraction (XRD) measurement, UV–vis diffuse reflectance spectroscopy, and X‐ray photoelectron spectroscopy (XPS). The results of TEM and UV–vis absorption spectra showed that well‐dispersed silver nanoparticles have a narrow size distribution. XRD showed that Ag and Ag/PS nanocomposite particles were less than 10 and 20 nm in size, which is similar to those observed by TEM. The results of XPS spectra revealed that the microemulsion system can stabilize the silver nanoparticles from aggregation and provided supporting evidence for the polystyrene encapsulated silver nanoparticle structure. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008.  相似文献   

4.
Highly monodisperse polystyrene nanoparticles with mean diameters of less than 100 nm are synthesized via aqueous emulsion polymerization using an amphoteric initiator (VA-057) in the presence of sub-millimolar concentrations of anionic surfactant. Since the net charge on the initiator is almost zero at neutral pH, the resultant latex particle size is mainly determined by surfactant adsorption. Polymerizations were performed in the presence of a range of anionic surfactants with differing critical micelle concentrations (CMC) by varying the concentrations of surfactant, initiator and monomer, and also the ionic strength. Sodium dodecyl benzene sulfonate (SDBS), sodium hexadecyl sulfate (SHS), and sodium octadecyl sulfate (SOS) have relatively low CMCs and so enable formation of highly monodisperse nanoparticles at relatively low (sub-millimolar) surfactant concentrations, CS (i.e. below the CMC in each case). Empirically, it was found that the particle number, Np, and coefficient of variation of the particle size, CV, were strongly dependent on the CS/CMC ratio: Np increased almost in proportion with the square of this ratio, while the CV exhibited a minimum at approximately CS/CMC = 0.20. Higher ionic strength reduced the particle size, which is consistent with the above relationship because the addition of salt lowers the CMCs of ionic surfactants. Polymer latex particles produced using such formulations form highly regular, close-packed colloidal arrays.  相似文献   

5.
Flame‐retardant nanoparticles of sizes ranging between 33 ± 6 and 460 ± 50 nm were formed by the emulsion polymerization of the pentabromobenzyl acrylate (PBBA) monomer in the presence of sodium dodecyl sulfate as the surfactant and potassium persulfate as the initiator. The effect of various polymerization parameters, e.g. monomer, crosslinker monomer, initiator and surfactant concentrations, on the size, size distribution and polymerization yield of the poly(pentabromobenzyl acrylate) nanoparticles produced has been elucidated. Poly(pentabromobenzyl acrylate)/polystyrene (PPBBA/PS) nanoblends containing 15% and 70% of PPBBA particles of 33 ± 6 and 460 ± 50 nm diameter were prepared by mixing the particles with a PS solution in methylene chloride, followed by evaporation of the methylene chloride from the mixture. The effect of the size and the content of the PPBBA nanoparticles in the nanoblends on the thermal stability of the PS were also elucidated. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
在烷基多苷(APG)/苯乙烯/水三元体系O/W微乳液中,选用水溶性K2S2O8作为引发剂,制得小粒径(35.4nm)、单分散(P=0.180〈0.2)聚苯乙烯颗粒。研究了苯乙烯、过硫酸钾、烷基多苷以及NaCl质量浓度对产物粒径和多分散度的影响。结果表明:聚苯乙烯随苯乙烯的增加颗粒粒径变大(43.8nm);随过硫酸钾的增加颗粒粒径变大(37.9nm),多分散度变小(P=0.153);随烷基多苷的增加颗粒粒径变小(33.4nm),而多分散度变大(P=0.195);随NaCl的增加颗粒粒径变大(45.6nm)。微乳结构的转变点对产物有重要的影响。  相似文献   

7.
Core shell latex particles with a glassy core and a low Tg polymeric shell are usually preferred. More so, the glassy core happens to be a fluoropolymer with a shell polymer that helps in processability. We describe here the preparation and characterization of core shell nanoparticles consisting of poly(chlorotrifluoroethylene‐co‐ethylvinylether) as core encapsulated in poly(styrene‐acrylate) copolymer shell using seeded emulsion polymerization method under kinetically controlled monomer starved conditions. Properties of the emulsion using surfactants (fluoro/conventional) and surfactant free conditions were investigated. Average size (100 nm), spherical shape and core–shell morphology of the latex particles was confirmed by dynamic light scattering and transmission electron microscopy. Absence of C? F and C? Cl peaks in X‐ray photoelectron spectroscopy proves that cores are completely covered. Polymerization in the presence of fluorocarbon surfactant was found to give optimum features like narrow size distribution, good shell deposition and no traces of agglomeration. Films of core shell latex particles exhibited improved transparency and enhanced water contact angles thus making them suitable for applications in various fields including coatings. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Polymeric hybrid nanoparticles were synthesized via surface‐initiated atom‐transfer radical polymerization (SI‐ATRP) method on the surface of gold nanoparticles in cyclohexanone. Tetraoctyl ammonium bromide (TOAB) as a phase transfer agent was used to transfer the gold nanoparticles into cyclohexanone, which will be replaced by disulfide initiator on the surface of gold nanoparticles. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV–vis spectroscopy were utilized to characterize the product to make sure the experiment had been conducted. The results showed that the polymeric gold hybrid nanoparticles with different structures could be controlled by adjusting the ratio of initiator and gold nanoparticles in ATRP. If the ratio is very little, asymmetric polystyrene–gold hybrid nanoparticles were synthesized, and a single gold nanoparticle was attached with a polystyrene sphere. If the ratio becomes larger, core–shell polystyrene–gold nanocomposite particles were obtained resulting in gold nanoparticle encapsulated by a uniform polymer shell. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43584.  相似文献   

9.
A facile emulsifier‐free emulsion polymerization approach was developed to fabricate highly monodisperse polystyrene (PS) spheres using potassium persulfate as the initiator and polyvinylpyrrolidone (PVP) as a stabilizer, respectively. It was found that the size of monodisperse PS spheres tends to decrease with increase of the PVP concentration, and the size of monodisperse PS spheres could be easily controlled in a wide range from 200 to 1500 nm simply by adjusting the concentration of PVP. The increase of monomer concentration led to the increase in size of monodisperse PS spheres. In contrast, the increase of initiator concentration resulted in the decrease in size of monodisperse PS spheres. These concentration changes, however, did not significantly affect the size distributions of PS spheres. It was also found that the size of monodisperse PS spheres obtained by adding the initiator at room temperature was larger than that by adding the initiator at 70°C, and the existence of inhibitor resulted in smaller PS spheres. The mechanisms in which the above factors influence the size and size distribution were discussed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Poly(styrene‐co‐divinylbenzene) microspheres with size ranging from 1.6 to 1.8 μm were prepared in acetic acid by precipitation polymerization. The particle size and particle size distribution were determined by laser diffraction particle size analyzer, and the morphology of the particles was observed with scanning electron microscope. Besides, effects of various polymerization parameters such as initiator and total monomer concentration, divinylbenzene (DVB) content, polymerization time and polymerization temperature on the morphology and particle size were investigated in this article. In addition, the yield of microspheres increased with the increasing total monomer concentration, initiator loading, DVB concentration and polymerization time. In addition, the optimum polymerization conditions for synthesis of monodisperse crosslinked poly(styrene‐co‐divinylbenzene) microspheres by precipitation polymerization in acetic acid were obtained. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
One‐step synthesis of star copolymers by reversible addition–fragmentation chain transfer (RAFT) and ring‐opening polymerization (ROP) by using a novel dual initiator is reported. Triarm block copolymers comprising one polystyrene (or polyacrylamide) arm and two poly(β‐butyrolactone) arms were synthesized in one‐step by simultaneous RAFT polymerization of styrene (St) (or acrylamide, designated as AAm) and ROP of β‐butyrolactone (BL) in the presence of a novel trifunctional initiator, 1,2‐propanediol ethyl xanthogenate (RAFT‐ROP agent). This dual initiator was obtained through the reaction of 3‐chloro‐1,2‐propanediol with the potassium salt of ethyl xanthogenate. The principal parameters such as monomer concentration, initiator concentration, and polymerization time that affect the one‐step polymerization reaction were evaluated. The characterization of the products was achieved using Fourier‐transform infrared spectroscopy (FTIR), 1H‐nuclear magnetic resonance (1H‐NMR), 13C‐nuclear magnetic resonance (13C‐NMR), Gas chromatography–mass spectrometry (GC–MS), gel‐permeation chromatography (GPC), thermogravimetric analysis (TGA), and fractional precipitation (γ) techniques. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Magnetic polystyrene nanospheres were efficiently prepared by using a new indirect process based on miniemulsion polymerization of styrene. The samples were characterized by X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), and vibrating‐sample magnetometry (VSM), respectively. The experimental results clearly show that the 3‐methacryloxypropyltrimethoxy silane was anchored onto the surface of the magnetic particles to form the vinyl end. The size of the magnetic particle is about 6–30 nm. The size of the magnetic particle capped with polystyrene is about 1–2 μm. The magnetic polystyrene spheres exhibit multidomain character, whereas the pure magnetic particles show single domain character. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3660–3666, 2007  相似文献   

13.
High ion-exchange capacity (IEC) sulfonated polystyrene nanoparticles were synthesized by an emulsion copolymerization of styrene, divinyl benzene and sulfonated styrene (SS). The effects of varying the counterion of the sulfonated styrene monomer, the SS concentration, the surfactant and the addition of a crosslinking agent on the ability to stabilize the emulsion nanoparticles to high IEC were studied. Water-insoluble nanoparticles, 20-160 nm in diameter, with IEC as high as 5.2 meq/g were achieved using sulfonated styrene with a quaternary alkyl ammonium cation, a non-ionic surfactant and a crosslinking agent in the emulsion formulation. That IEC corresponds to fully sulfonated crosslinked polystyrene.  相似文献   

14.
Ultrasonically initiated miniemulsion polymerization of styrene was conducted in the presence of Fe3O4 nanoparticles. Stable polystyrene (PS)/Fe3O4 nanocomposite emulsions were prepared and magnetic PS/Fe3O4 composite particles were obtained through magnetic separation. The whole procedure comprised two steps. First, Fe3O4 nanoparticles were dispersed in the monomer phase with the aid of stabilizer Span‐80. Second, miniemulsion polymerization of styrene in the presence of Fe3O4 nanoparticles was carried out under an ultrasonic field in the absence of a chemical initiator. The affecting factors, including stabilizer concentration, surfactant concentration, hexadecane concentration and the amount of Fe3O4, were systematically studied. Stabilizer concentration, surfactant concentration and hexadecane concentration strongly affected the formation of the coagulation. The least amount of coagulation was formed at 2.5 wt% Span‐80 concentration. The addition of Fe3O4 nanoparticles drastically increased the polymerization rate owing to the fact that Fe3O4 nanoparticles increased the acoustic intensity and Fe2+ reacted with H2O2 to produce hydroxyl radicals and increase the number of radicals. The increase in cosurfactant concentration and power output also increased the polymerization rate. Copyright © 2005 Society of Chemical Industry  相似文献   

15.
Poly(n‐butyl methacrylate) (PBMA)‐b‐polystyrene (PSt) diblock copolymers were synthesized by emulsion atom transfer radical polymerization (ATRP). PBMA macroinitiators that contained alkyl bromide end groups were obtained by the emulsion ATRP of n‐butyl methacrylate with BrCH3CHCOOC2H5 as the initiator; these were used to initiate the ATRP of styrene (St). The latter procedure was carried out at 85°C with CuCl/4,4′‐di(5‐nonyl)‐2,2′‐bipyridine as the catalyst and polyoxyethylene(23) lauryl ether as the surfactant. With this technique, PBMA‐b‐PSt diblock copolymers were synthesized. The polymerization was nearly controlled; the ATRP of St from the macroinitiators showed linear increases in number‐average molecular weight with conversion. The block copolymers were characterized with IR spectroscopy, 1H‐NMR, and differential scanning calorimetry. The effects of the molecular weight of the macroinitiators, macroinitiator concentration, catalyst concentration, surfactant concentration, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP are also reported. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2123–2129, 2005  相似文献   

16.
Polystyrene latexes were prepared in the presence of an amino‐containing functional comonomer, N‐(3‐aminopropyl)methacrylamide hydrochloride (APMH), via soap‐free batch emulsion polymerization initiated by the cationic initiator 2,2′‐azobis(2‐amidinopropane) dihydrochloride. These latexes were characterized by studying the influence of the ionic comonomers on the polymerization kinetics, particle size, surface charge density and colloidal properties. The synthesized latexes were monodisperse with a final size between 100 and 600 nm depending on the APMH concentration. The initial polymerization rate and the particle number increased in accordance with the Smith–Ewart theory for soap‐free styrene emulsion polymerization with a hydrophilic functional comonomer. The final functionalization rate of the particles has been particularly studied with the intention of fitting the prepared latexes to be used in the immobilization of biological molecules for biological sample preparation and diagnostic applications. © 2020 Society of Chemical Industry  相似文献   

17.
Atomic force microscopy was used to study the characteristics of polymer films formed via admicellar polymerization (the polymerization of monomers solubilized in adsorbed surfactant aggregates). The investigated system included cetyltrimethylammonium bromide (C16TAB) as a cationic surfactant, styrene, 2,2′‐azobisisobutyrilnitrile as an initiator, and polished silica disk substrates. Our goal was to examine changes in the properties and morphology of the formed polymer films due to changes in the surfactant and monomer feed levels. Normal tapping and phase‐contrast modes in air were used to image the nanoscopic and microscopic morphologies of the polystyrene‐modified silica. The root‐mean‐square roughness of the surface before and after modification was statistically analyzed and compared. The images were captured with loading‐force set‐point ratios of 0.2–0.9, and this allowed us to examine the stability of the polystyrene films. In the first series, for which the feed ratio of C16TAB to styrene was kept constant and the total feed concentration was varied, a uniform layer of a polystyrene film was observed along with some nanometer‐size aggregates at high feed concentrations of both C16TAB and styrene. These droplets eventually agglomerated with the film beneath and formed larger macrodroplets in a ring arrangement. At lower concentrations, droplets and holes were observed that eventually agglomerated to form a bicontinuous thin film. In the second experimental series, the concentration of C16TAB was kept constant, and the feed ratio of C16TAB to styrene was varied. A smooth thin film was observed at high concentrations of styrene. This film could be deformed and/or removed to expose the silica surface beneath. At lower styrene loadings, the polystyrene film became unstable and formed dropletlike aggregates, possibly because of either the uneven adsolubilization of the styrene monomer within the admicelle or the dewetting effect during washing and drying. The structure of the polystyrene film formed on a smooth silica disk was very dependent on the amount of the surfactant fed to the system; this contrasted with the results on precipitated silica. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 36–46, 2003  相似文献   

18.
Polystyrene/poly(vinyl acetate) latex nanoparticles with a core–shell morphology in an emulsifier‐free emulsion polymerization system were prepared with purified styrene and vinyl acetate (VAc) as monomers and 2,2′‐azo bis(2‐amino propane) dihydrochloride (ABA,2HCl) as the initiator and emulsifier. The optimized conditions of polymerization of VAc, on top of the already‐formed polystyrene as a core polymer, with a core–shell morphology were obtained using various parameters such as volume ratio of the first and second stages, type of process, and reaction time. The morphologic structure of the nanoparticles was studied by scanning electron microscopy and transmission electron microscopy. The latex nanoparticles and polymers were characterized by differential scanning calorimetry. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2409–2414, 2006  相似文献   

19.
Poly ε‐caprolactone‐polystyrene block‐copolymers (PCL‐b‐PSt) were synthesized using a modified titanium catalyst as the dual initiator. Alcoholysis of Ti(OPr)4 by 4‐hydroxy 2,2,6,6 tetramethyl piperidinyl‐1‐oxyl (HO‐TEMPO) gave a bifunctional initiator Ti(OTEMPO)4. Poly ε‐caprolactone prepolymer end‐capped with the nitroxide group was first prepared by ring opening polymerization of ε‐caprolactone with this initiator at high conversion. The nitroxide‐end‐capped structure and molar mass (Mn) of the polymers were demonstrated by typical UV absorption band. This analytical technique indicates a near‐quantitative nitroxide functionality and a Mn in good agreement with size exclusion chromatography (SEC) ones. This polyester prepolymer was used to further initiate the radical polymerization with styrene and reach the block copolymers (PCL‐b‐PSt). All the prepolymers and block copolymers were characterized by SEC and NMR spectroscopy. Additionally, the preparation of star polymers bearing two kinds of arms (PCL and PSt) was envisaged and a preliminary result was given. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Polyamide 6 (PA6)/polystyrene (PS) blends with an average particle size of 103 nm were prepared by diffusion and subsequent polymerization of styrene in water‐sorbed PA6 pellets. The pretreatment of PA6 pellets in hot water is prerequisite for successful styrene diffusion. The diffusion process involves replacement of free water in the pellets by styrene, and should be carried out in neat styrene medium to provide concentration gradient between inside and outside of the pellets. The polymerization step was carried out in water medium with benzoic peroxide as the initiator. The diametrical distribution of PS in the blend pellets was investigated by Micro‐FTIR, and molecular weight of PS was measured by GPC. DSC measurements showed that the diffusion and polymerization of styrene occur in the amorphous regions of PA6 where the pre‐sorbed water locates. PA6/PS quasi‐nanoblends reported in this work cannot be obtained by conventional methods. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44554.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号