首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A series of sulfonated poly(aryl ether sulfone) copolymers containing phenyl pendant groups with sulfonic acid groups on the backbone were synthesized through condensation polymerization. The degree of sulfonation (DS) of the copolymers was controlled by changing the feed ratios of sulfonated to unsulfonated monomers. Post‐crosslink reactions are carried out with 4,4′‐thiodibenzoic acid (TDA) as a crosslinker and the carboxylic acid groups in TDA can undergo Friedel–Craft acylation with the phenyls pendent rings in sulfonated poly(arylene ether sulfone)s copolymers to prepare polymer electrolyte membranes for fuel cell applications. The chemical structures of crosslinked and uncrosslinked sulfonated poly(arylene ether sulfone)s copolymers (SPSFs and CSPSFs) were characterized by FTIR, 1H NMR spectra. The thermal and mechanical properties of the membranes were characterized by thermogravimetric analysis and stress–strain test. The dependence of water uptake, methanol permeability, proton conductivity, and selectivity on DS was studied. Transmission electron microscopic observations revealed that SPSFs and CSPSFs membranes form well‐defined microphase separated structures. POLYM. ENG. SCI., 54:2013–2022, 2014. © 2013 Society of Plastics Engineers  相似文献   

2.
Crosslinked sulfonated poly(ether ether ketone) (SPEEK) membranes were prepared through the electron beam (EB)‐irradiation crosslinking of SPEEK/1,4‐butanediol under various irradiation conditions and used as a proton exchange membrane (PEM) for fuel cell applications. The crosslinked membranes were characterized by gel fraction, a universal testing machine (UTM), dynamic mechanical analysis (DMA), and small‐angle X‐ray scattering (SAXS). The gel fraction of the crosslinked membranes was used to estimate the degree of crosslinking, and the gel fraction was found to be increased with an increase of the crosslinker content and EB‐absorbed dose. The UTM results indicate that a brittle EB‐crosslinked membrane becomes more flexible with an increase in the crosslinker content. The DMA results show that the EB‐crosslinked membranes have well‐developed ionic aggregation regions and the cluster Tg of membranes decrease with an increase in the 1,4‐butanediol crosslinker content. The SAXS results show that the Bragg and persistence distance of crosslinked membranes increase with an increase in the crosslinker content. The proton conductivities of the EB‐crosslinked membranes were more than 9 × 10?2 S/cm. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41760.  相似文献   

3.
Novel proton exchange membranes are solvent‐cast from N,N‐dimethylacetamide (DMAc) solutions of the crosslinked poly(arylene ether ketone) copolymer with pendant carboxylic acid group (C‐SPAEK) via poly(ethylene glycol) (PEG) with different amounts. These membranes are formed as a result of physical and chemical crosslinking. In this study, 1H‐NMR and FTIR have been used to confirm the chemical structures of the copolymers. Mechanical and thermal properties, swelling and proton conductivity are affected by the crosslinker (PEG) content in the copolymers. Compared to the noncrosslinked C‐SPAEK membrane, the crosslinked membranes become more flexible and greatly reduced water uptake and swelling ratio with only slight sacrifice in proton conductivities. And the crosslinked membranes keep higher proton conductivities without a sharply decrease at higher temperature. These results show that the crosslinked membranes have potential applications as proton exchange membranes for fuel cell. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Two series of sulfonated poly(arylene ether nitrile ketone) ionomers containing potential crosslinkable nitrile groups were synthesized in high yield by direct aromatic nucleophilic polycondensation of 1,4‐bis‐(4‐hydroxyphenyl)‐2,3‐dicyano ‐naphthalene ( 3 ) with different molar ratio of disodium 5,5′‐carbonyl‐bis‐(2‐fluorobenzene‐sulfonate) ( 4 ) to 5,5′‐carbonyl‐bis‐(2‐fluorobenzene) ( 5 ) or 4,4‐biphenol ( 7 ). Subsequently, the sulfonated polymeric ionomers were in situ crosslinked when cast into membranes from solution at 180°C under nitrogen protection. The structure of the synthesized polymers was characterized by 1H‐nuclear magnetic resonance (NMR), Fourier‐transform infrared spectra, and elemental analysis. Comparing with the original polymeric membranes, the crosslinked membranes showed much better thermal and hydrolytic stabilities and superior mechanical properties as well as much lower swelling behavior, which were even better than Nafion 117 membrane. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
In this study, sulfonated poly(ether ether ketone) (SPEEK) was very efficiently crosslinked via a Friedel–Craft reaction using 1,6‐dibromohexane and AlCl3. The resulting crosslinked SPEEK (c‐SPEEK) membranes exhibited improved dimensional stability, thermal and chemical stability, and mechanical strength with slight reduction in the elongation. The methanol permeability was reduced by approximately two orders of magnitude by the crosslinking reaction. The proton conductivities of c‐SPEEK membranes were greater than Nafion‐212 in the temperature range of 30–90°C. Overall, this new crosslinking method can be conveniently and efficiently applicable to most aromatic hydrocarbon polymer membranes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40695.  相似文献   

6.
Sulfonated poly(arylene ether sulfone) (SPAES‐F series) membranes, which are partially fluorinated multiblock polymers containing Bisphenol 6F (6F‐BPA), are synthesized. The membranes exhibit less water uptake and higher ion conductivity at similar ion exchange capacity (IEC) values compared to previous SPAES membranes containing identical hydrophilic blocks. This is attributed to the presence of 6F‐BPA in the hydrophobic block, which enhances hydrophobicity and promotes phase separation, as observed through transmission electron microscopy analysis. F4 (IEC = 2.4 meq g?1) shows superior ion conductivity than Nafion NRE212 membrane irrespective of the humidity level. Furthermore, the SPAES electrolyte membrane of 1.5 meq g?1 produces better performance than NRE212, yielding a current density of 488 mA cm?2 at 80 °C, 80% RH, and 0.6 V. In 50% RH at 80 °C, SPAES with 1.5 meq g?1 exhibits a cell resistance and fuel cell performance comparable to those of NRE212; clearly, regulating hydrophobicity and hydrophilicity is crucial for enhanced performance.  相似文献   

7.
A series of sulfonated poly(ether ether ketone ketone)s derived from bisphenol S were prepared by nucleophilic polycondensation. They showed high thermal resistance and good solubility. Most of the polymers were easily cast into tough membranes. The swelling of the membranes (6.02–16.02%) was lower than that of Nafion membranes, and the ion‐exchange capacity of the membranes (0.67–1.44) was higher than that of Nafion membranes. The proton conductivity of the membranes was 0.022–0.125 s/cm. They could be used as proton‐exchange membranes in fuel cells. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1569–1574, 2004  相似文献   

8.
We investigated the material properties of different crosslinked sulfonated poly(aryl ether ketone) membranes, focusing on the effect of the degree of sulfonation and crosslinking density on the water uptake, the physical state of the water, and the pore size distribution within the membranes. We observed that the degree of sulfonation and, in particular, the ion‐exchange capacity (IEC) had less effect on the control of the extent of water absorbed than the crosslinking density of the membranes. Crosslinking also enabled the membranes to reach a higher water contents without losing mechanical integrity. Moreover, increasing the crosslinking density resulted in the presence of more bound water, without dissolution of the membrane. The crosslinked membranes had lower methanol permeability and electroosmotic drag values. Only at low IEC values and low water uptake in partially crystalline sulphonated poly(ether ether ketone), SPEEK could the presence of nanometer pores in the water‐equilibrated crosslinked membranes be confirmed by thermoporometry and the pore size distributions were then comparable to those reported for Nafion membranes. At higher IEC values, the water uptake was extremely high, up to 300%, and then the structure of the swollen membranes was more analogous to that of a dilute aqueous solution of the sulfonated polymer, and no nanopores were present. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
In this study, poly(arylene ether nitriles) containing pendant carboxyl groups (PEN‐COOH) was first synthesized via nucleophilic aromatic substitution reaction from phenolphthalein, hydroquinone and 2,6‐dicholorobenzonitrile. Then, poly(arylene ether nitriles) with pendant phthalonitrile groups (PEN‐CN) was obtained via the Yamazaki–Higashi phosphorylation route from 4‐(4‐aminophenoxy)phthalonitrile (APN) with PEN‐COOH in the presence of CaCl2, thus the phthalonitrile as pendant groups in PEN‐CN were easily crosslinked by further thermal treatment. The effect of crosslinking density on the thermal stabilities, dielectric properties and water absorption of the PEN‐CNs was investigated. These results showed that the Tg of PEN‐CN was improved from 182 to 213°C, dielectric constant (ε) was increased from 3.1 to 3.9, and dielectric loss (tan δ) was decreased from 0.090 to 0.013 at 1 kHz. The water absorption of PEN‐CNs after thermal crosslinking was <1.01 wt %, which showed excellent water resisting property. Therefore, this kind of poly(arylene ether nitriles) containing pendant phthalonitrile could be a good candidate as matrix resins for high‐performance polymeric materials. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
A series of crosslinked membranes based on new sulfonated polyphosphazene bearing pendent perfluorosulfonic acid groups (PMFP‐g‐PS) and sulfonated poly (ether ether ketone) were prepared and evaluated as proton exchange membranes for direct methanol fuel cells (DMFCs). The structure of PMFP‐g‐PS was characterized by Fourier transform infrared spectroscopy, 1H and 19F NMR spectra. In comparison with the pristine PMFP‐g‐PS membrane, the crosslinked membranes showed improved water uptakes and proton conductivities. The methanol permeability values of the membranes were in the range of 1.32 × 10?7 to 3.85 × 10?7 cm2/s, which were lower than Nafion 117 (12.1 × 10?7 cm2/s). The selectivity of all the membranes was much higher compared with Nafion 117. Furthermore, transmission electron microscopy observation revealed that clear phase‐separated structures were well dispersed and connected to each other in the membranes. These membranes displayed high water uptakes and low swelling ratios, high proton conductivities, low methanol permeability values, good thermal, and oxidative stabilities. The results indicate that these membranes are potential candidate proton exchange membrane materials for DMFCs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43492.  相似文献   

11.
In this study, sulfonated poly(arylene ether sulfone) (SPAES) and sulfonated poly(arylene ether ketone) (SPAEK) were randomly synthesized, employing a presulfonation process. This presulfonation process resulted in a more controlled and reproducible sulfonation level. The respective polymers were prepared using 2,2-Bis(4-hydroxyphenyl) propane at 50% molar ratio, which also provided some membrane elasticity. The resulting polymers, each had 25% of the block containing the sulfonic domains (SPAES A 25 and SPAEK A 25). Better conductive membranes were achieved for the random sulfone polymers than for the random ketone polymers, with values, respectively, of 0.24 and 0.07 S cm−1 at 80°C. The lower proton conductivity from the ketone-based polymer was compensated with very low methanol permeability (0.25 × 10−6 cm2 s−1) and outstanding oxidative stability. The selectivity of both polymer membranes exceeded the reported values for the state-of-the-art Nafion® 117 and other commercially available options. Both polymer membranes, with their unique combination of ionic domains, elastomeric blocks, and resulting morphology, could be viable candidates for fuel cell applications.  相似文献   

12.
A series of covalently and ionically crosslinked sulfonated poly(arylene ether ketone)s (SPAEKs) were prepared via the cyclocondensation reaction of crosslinkable SPAEKs with 3,3′-diaminobenzidine to form quinoxaline groups, where crosslinkable SPAEKs were synthesized by copolymerization of 4,4′-biphenol with 2,6-difluorobenzil, 4,4′-difluorobenzophenone, and 5,5′-carbonyl-bis(2-fluorobenzene sulfonate). The SPAEK membranes had high mechanical properties and the isotropic membrane swelling. The covalent and ionical crosslinking significantly improved the membrane performance, i.e., the crosslinked membranes showed the lower membrane dimensional change, lower methanol permeability, and higher oxidative stability than the corresponding uncrosslinked membranes, with keeping the reasonably high proton conductivity. The crosslinked membrane (CK3) with measured ion exchange capacity of 1.62 mequiv g−1 displayed a reasonably high proton conductivity of 110 mS/cm with water uptake of 33 wt% at 80 °C, and exhibited a low methanol permeability of 1.7 × 10−7 cm2 s−1 for 32 wt% methanol solution at 25 °C. The covalently and ionically crosslinked SPAEK membranes have potential for polymer electrolyte membrane fuel cells and direct methanol fuel cells.  相似文献   

13.
Precise assignment with 1H, 13C and some two dimensional NMR measurements showed that sulfonation reaction by concentrated sulfuric acid at 30 °C of fluorine-containing poly(arylene ether ketone) copolymers derived from 4,4′-bis(2,4,5,6-pentafluorobenzoyl)diphenyl ether (BPDE) and 9,9-bis(4-hydroxypehnyl)fluorene (HF) and 2,2-bis(4-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropane (6FBA) yielded quantitative introduction of sulfonic groups onto 2- and 7-positions of fluorene ring in HF unit. A series of sulfonated poly(arylene ether ketone)s with different ion exchange capacity was prepared by using this method with different compositions of HF and 6FBA, and membranes obtained from these polymers were characterized by TGA, moisture and water uptake, proton conductivity, methanol permeability, and Fenton testing. These membranes showed sufficient thermal stability, high proton conductivity at high humidified condition for PEFC and good balance in proton conductivity in water and methanol permeability for DMFC. On the other hand, they showed relatively high swelling by water probably due to weak intermolecular interaction caused by the existence of fluorine atoms in the polymer structure.  相似文献   

14.
A crosslinked epoxy [4,4′‐diglycidyl‐(3,3′,5,5′‐tetramethylbiphenyl) epoxy resin (TMBP)], cured by phenol novolac (PN), was introduced into a sulfonated poly(ether ether ketone) (SPEEK) membrane (ion‐exchange capacity = 2.0 mequiv/g) with a casting‐solution, evaporation, and heating crosslinking method to improve the mechanical properties, dimensional stability, water retention, and methanol resistance. By Fourier transform infrared analysis, the interactions between the sulfonic acid groups and hydroxyl groups in the blend membranes were confirmed. The microstructure and morphology of the blend membranes were investigated with atomic force microscopy. As expected, the blend membranes showed excellent mechanical properties, good thermal properties (thermal stability above 200°C), lower swelling ratios (1.4% at 25°C and 7.0% at 80°C), higher water retention (water diffusion coefficient = 9.8 × 10?6 cm2/s), and a lower methanol permeability coefficient (3.6 × 10?8 cm2/s) than the pristine SPEEK membrane. Although the proton conductivity of the blend membranes decreased, a higher selectivity (ratio of the proton conductivity to the methanol permeability) was obtained than that of the pristine SPEEK membrane. The results showed that the SPEEK/TMBP/PN blend membranes could have potential use as proton‐exchange membranes in direct methanol fuel cells. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
A novel series of naphthalene-based poly(arylene ether ketone) copolymers containing methoxy groups and hexafluoroisopropylidene diphenyl moieties (6F-MNPAEKs) were successfully synthesized by aromatic nucleophilic polycondensation. Chain-type fluorinated and sulfonated naphthalene-based poly(arylene ether ketone) copolymers (6F-SNPAEKs) were subsequently synthesized by demethylation and sulfobutylation. The chemical structures of 6F-SNPAEKs were confirmed by 1H NMR. The 6F-SNPAEKs in acid form showed excellent thermal stability at elevated temperatures. The 6F-SNPAEK membranes were easily obtained by solution casting and properties for fuel cells were investigated in detail. The water uptake, swelling ratio and proton conductivity increased with degree of sulfonation (DS) and temperature. 6F-SNPAEK-90 showed the highest conductivity of 0.181 S cm?1 at 80 °C. The methanol permeability of the membranes was in the range of 0.238–6.49 × 10?7 cm2 s?1, compared to 1.55 × 10?6 cm2 s?1 for Nafion 117. The membranes also showed excellent mechanical properties: the elongation at break was greater than 15%. These results indicate that the 6F-SNPAEK membranes are a promising candidate for use in direct methanol fuel cell (DMFC) applications.  相似文献   

16.
In this study, glycidyl methacrylate was copolymerized with poly(ethylene glycol) methyl ether methacrylate to obtain a copolymer {poly[glycidyl methacrylate–poly(ethylene glycol) methyl ether methacrylate] [P(GMA–PEGMA)]}, which was crosslinked with α,ω‐diamino poly(propylene oxide) (Jeffamine) at various weight ratios and molecular weights to form novel gel polymer electrolytes (GPEs). The crosslinked copolymers were characterized by Fourier transform infrared spectroscopy and thermal analysis. The crosslinked polymers were amorphous in the pristine state and became crystallized after they were doped with lithium electrolyte. Furthermore, the crosslinking degree of the crosslinked polymers increased with increasing weight ratio of Jeffamine, and both the swelling properties and mechanical behaviors of the crosslinked polymers were heavily affected by the weight ratio and molecular weight of Jeffamine. The ionic conductivity (σ) of the GPEs from the crosslinked copolymers was determined by alternating‐current impedance spectroscopy. A higher molecular weight and increased weight ratio of Jeffamine resulted in a higher σ. The GPE based on P(GMA–PEGMA) crosslinked with an equal weight of Jeffamine D2000 exhibited the highest σ of 8.29 × 10−4 S/cm at 25°C and had a moderate mechanical strength. These crosslinked copolymers could be potential candidates for the construction of rechargeable lithium batteries. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Novel bisphenol A‐based sulfonated poly(arylene ether sulfone) (bi A‐SPAES) copolymers were successfully synthesized via direct copolymerization of disodium 3,3′‐disulfonate‐4,4′‐dichlorodiphenylsulfone, 4,4′‐dichlorodiphenylsulfone, and bisphenol A. The copolymer structure was confirmed by Fourier transform infrared spectra and 1H NMR analysis. The series of sulfonated copolymers based membranes were prepared and evaluated for proton exchange membranes (PEM). The membranes showed good thermal stability and mechanical property. Transmission electron microscopy was used to obtain the microstructures of the synthesized polymers. The membranes exhibit increased water uptake from 8% to 66%, ion exchange capacities from 0.41 to 2.18 meq/g and proton conductivities (25°C) from 0.012 to 0.102 S/cm with the degree of sulfonation increasing. The proton conductivities of bi A‐SPAES‐6 membrane (0.10–0.15 S/cm) with high‐sulfonated degree are higher than that of Nafion 117 membrane (0.095–0.117 S/cm) at all temperatures (20–100°C). Especially, the methanol diffusion coefficients of membranes (1.7 × 10?8 cm2/s–8.5 × 10?7 cm2/s) are much lower than that of Nafion 117 membrane (2.1 × 10?6 cm2/s). The new synthesized copolymer was therefore proposed as a candidate of material for PEM in direct methanol fuel cell. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
Sulfonated cardo poly(arylene ether sulfone)s ( SPPA ‐ PES ) with various degrees of sulfonation (DS) were prepared by post‐sulfonation of synthesized phenolphthalein anilide ( PPA ; N‐phenyl‐3,3′‐bis(4‐hydroxyphenyl)‐1‐isobenzopyrolidone) poly(arylene ether sulfone)s ( PPA ‐ PES ) by using concentrated sulfuric acid. PPA ‐ PES copolymers were synthesized by direct polycondensation of PPA with bis‐(4‐fluorophenyl)‐sulfone and 4,4′‐sulfonyldiphenol. The DS was varied with different mole ratios of PPA (24, 30, 40, 50 mol.%) in the polymer. The structure of the resulting SPPA ‐ PES copolymers and the different contents of the sulfonated unit were studied by Fourier transform infrared (FT‐IR) spectroscopy, 1H NMR spectroscopy, and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity of SPPA ‐ PES were evaluated according to the increase of DS. The water uptake (WU) of the resulting SPPA ‐ PES membranes was in the range of 20–72%, compared with 28% for Nafion 211®. The SPPA ‐ PES membranes showed proton conductivities of 23–82 mS cm–1, compared with 194 mS cm–1 for Nafion 211®, under 100% relative humidity (RH) at 80 °C.  相似文献   

19.
A new method of synthesis of poly(ether carbonate)s based on interchange reactions of dihydroxy compounds with alkylene and arylene diphenyl dicarbonates containing ether group was presented. The diphenyl dicarbonate monomers were prepared from phenyl chloroformate and dihydroxy compounds containing ether group (e.g., diethylene glycol, bis(2‐hydroxyethyl ether) of bisphenol A, and 4,4′‐oxydiphenol). The process consisted of a precondensation step under a stream of dry argon followed by a melt polycondensation at 230 or at 250°C under vacuum. Four series of poly(ether carbonate)s were prepared using this approach. Using alkylene and arylene diphenyl dicarbonate‐containing ether groups as monomers, the polycondensation reaction with dihydroxy compounds led to the formation of poly(ether carbonate)s having inherent viscosity values up to 0.56 dL/g and high thermal stability. The glass transition temperature values of polycarbonates were in the range 7–122°C. The polymers were characterized by inherent viscosity and spectroscopic (Fourier transform infrared spectroscopy and 1H‐NMR and 13C‐NMR) and thermal (differential scanning calorimeteric and thermogravimetric) methods. This approach may permit the use of diphenyl dicarbonates containing other organic functional groups for the synthesis of polycarbonates containing those groups. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
A novel class of crosslinkable poly(phthalazinone ether ketone)s with relative high molecular‐weight and good solubility were successfully synthesized by the copolymerization of bisphthalazinone containing monomer, 3,3′‐diallyl‐4,4′‐dihydroxybiphenyl and 4,4′‐di‐ fluorobenzophenone. The synthesized polymers with inherent viscosities in the range of 0.42 to 0.75 dL/g can form flexible and transparent membranes by casting from their solution. The crosslinking reaction of these polymers can be carried out by thermally curing of the virgin polymers in or without the presence of crosslinking agent. The experimental results demonstrated that the crosslinking reaction also occurred to some extent during the polymerization. The crosslinked polymers exhibited equivalent glass transition temperature (Tg) at lower crosslinking density, and showed higher Tg than virgin polymers at higher crosslinking density. The crosslinked high‐temperature polymer can be used as the base material for high temperature adhesive, coating, enamel material, and composite matrices. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号