首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以聚酰胺6(PA6)为基体树脂,采用增韧剂马来酸酐接枝聚烯烃弹性体(POE-g-MAH)对PA6进行增韧改性研究。制备了不同增韧剂含量的改性PA6,研究了POE-g-MAH的含量对复合材料力学性能及流动性能的影响,以及复合材料在常温、低温及高寒条件下的韧性及拉伸性能,并利用SEM对复合材料的微观形貌进行表征。实验结果表明,在增韧剂质量分数为20%时,材料的综合性能较优;复合材料在低温下韧性良好,在-50℃高寒条件下当增韧剂质量分数为20%、30%时仍具有良好的韧性,冲击强度较纯PA6提高了130%、350%,断裂伸长率较纯PA6提高了195%、230%;低温拉伸强度随着温度的降低呈上升趋势。  相似文献   

2.
    
The solubility of polyamide 6 (PA6) in water under pressure has been reported recently and is explored further here using a pressurized differential scanning calorimeter equipped with a pressure regulator, enabling operation at constant pressure. The optimum parameters for solubility (temperature, pressure, concentration) were determined. Crystallization and melting temperature depressions of a maximum of 60 °C were found. The minimum water concentration needed to reach the maximum temperature depression was found to be approximately 30 mass%. Because in such a case the end melting/dissolution temperature for PA6 in water is approximately 165 °C, the pressure level has to be high enough to prevent water from evaporating, i.e. above 8 bar (0.8 MPa). The expected industrial uses of the water solubility of polyamides under pressure are to ease the processing of polyamides by extrusion; to make polyamide composites; to disperse temperature‐sensitive fillers in polyamides; and, in general, to realize ‘green’ routes for the formation of polyamides. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
摘要:研究了不同反应温度与压力条件下,耐高温聚酰胺聚对苯二甲酰癸二胺(PA10T)聚合反应相态情况,通过在升温反应前预先向反应釜内充入一定压力氮气的方法提高反应压力,在此基础上对比了不同初始压力下PA10T聚合反应的温度和压力随反应时间的变化情况,并绘制了PA10T聚合反应温度-压力相图。结果表明,在设定的反应温度范围内(220~270℃),反应温度与压力对PA10T的相对黏度和端基含量影响很小;PA10T聚合物溶液在230~250℃范围内(尤其在240℃时),处于热力学不稳定状态,在反应釜内长时间停留容易发生相分离,导致放料困难。通过降低反应温度至220℃或提高反应温度至260℃以上以及提高反应釜内初始压力两种途径,可大幅度延长相分离出现的时间,保持PA10T聚合物溶液处于均相状态,解决放料困难问题。  相似文献   

4.
    
Glass fiber reinforced polyamide (PA) 6 T/DT flame retarded with aluminum diethylphosphinate (AlPi) was tested to assess its flame retardant properties. Models for the decomposition of PA 6T/DT with and without AlPi are presented. Thermal decomposition was measured by performing TGA with Fourier transform infrared (FTIR) spectroscopy and FTIR spectroscopy in the condensed phase. Fire behavior was studied using a cone calorimeter and flammability was tested with UL 94 and the limiting oxygen index. AlPi works as an effective flame retardant for glass fiber reinforced PA 6T/DT materials, acting in the gas phase. Also observed was condensed‐phase action, which occurs especially under oxidative conditions before the samples ignite. © 2013 Society of Chemical Industry  相似文献   

5.
摘要:介绍了国内外目前耐高温尼龙(PA)的主要制备工艺,包括高温高压溶液缩聚法、低温溶液缩聚法、胺酯交换法、界面聚合法和直接熔融缩聚法;耐高温尼龙产品种类主要包括聚酰胺(PA)46,PA4T,PA6T,PA9T,PA10等;耐高温尼龙的下游主要应用领域包括电子电器、汽车制造、LED等领域。重点分析了不同合成工艺的研究进展以及针对不同应用领域中耐高温尼龙的功能化改性方向,并指出目前国内耐高温尼龙相关企业的主要发展方向,包括专利布局,新工艺开发,重视设备研发。  相似文献   

6.
尼龙-6/蒙脱土纳米复合材料用POE-g-MAH改性及性能研究   总被引:6,自引:1,他引:6  
宋波  黄锐  魏刚 《现代化工》2004,24(1):43-45
制备了尼龙-6(PA6)/马来酸酐接枝乙烯-1-辛烯共聚物(POE-g-MAH)和PA6-蒙脱土纳米复合物(NCH)/POE-g-MAH两种复合材料,其脆韧转变点都是在POE-g-MAH质量分数为8%~10%。在脆韧转变点前,PA6/POE-g-MAH和NCH/POE-g-MAH的缺口冲击强度几乎相同;在脆韧转变点后,NCH/POE-g-MAH的冲击强度远高于PA6/POE-g-MAH。复合材料的拉伸强度都随POE-g-MAH的增加而线性下降,在相同POE-g-MAH含量时,NCH/POE-g-MAH的拉伸强度比PA6/POE-g-MAH的低4MPa左右。  相似文献   

7.
    
Polyamide 6 (PA 6) filaments with initial modulus around 48 GPa were produced by dry spinning from low mole ratio (MR) complex of calcium chloride and high molecular weight PA 6 (CaCl2‐PA 6) in formic acid. From the results of XRD, DSC, FTIR, and SEM, the complexation of CaCl2‐PA 6 in the MR range of 0.15–0.3 was efficient. The spinnability of the complex solution was excellent, which allowed a maximum draw ratio of 14.4 for as‐spun fibers. After decomplexing and annealing, the birefringence of drawn fiber could reach around 0.08. Porous structure was found in fibers spun from formic acid‐chloroform cosolvent but not observed by using pure formic acid. When MR of CaCl2/PA 6 exceeded 0.3, some irregular particles formed on the fiber surface due to the recrystallization of CaCl2. However, fibers with smooth surface could be obtained when the MR decreased to 0.15. During the process of decomplexing in ethyl alcohol, an axial shrinkage of drawn fibers in a relaxed state was observed. It turned out that this shrinkage could be avoided by decompexing the fibers under tension. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
采用熔融共混法制备高密度聚乙烯(HDPE)/聚酰胺(PA)6/有机蒙脱土(OMMT)多元复合材料,借助X射线衍射仪、扫描电子显微镜、透射电子显微镜等分析了OMMT对HDPE/PA 6体系结构、性能的影响及作用机理。加入的少量OMMT以剥离形态分散在基体中,能起到较好的增容作用,并且改善了材料的冲击性能。但OMMT的加入使材料的熔体流动速率降低,剪切黏度增大。  相似文献   

9.
摘要:采用双螺杆挤出机制备了耐高低温、高流动、低吸水的尼龙6(PA6)管夹料,研究了增韧剂含量、成核剂母粒含量和增韧剂种类对管夹料性能的影响。结果表明,随着增韧剂含量的增加,管夹料的断裂伸长率和缺口冲击强度逐渐增加,熔体流动速率和平衡吸水率逐渐降低;当增韧剂的质量分数达到4%时,管夹料出现脆-韧转变;当增韧剂质量分数达到6%时,管夹料的综合力学性能最优,管夹样件耐高低温不变形;当成核剂母粒质量分数为10%时,管夹料的拉伸强度、弯曲强度、弯曲弹性模量分别提高了25.45%, 51.43%和25%,而23℃和-40℃缺口冲击强度分别降低了18.18%和33.33%,管夹料有较低的平衡吸水率,管夹样件耐高低温不变形;使用低温增韧剂N413,管夹料在低温下有更好的表现,管夹样件耐高低温不变形。当成核剂母粒E5073/低温增韧剂N413质量比为10/6时,PA6管夹料的综合力学性能最优,吸水率较低,管夹样件耐高低温不变形。  相似文献   

10.
    
Polyamide 1010/single‐walled carbon nanotube (PA1010/SWNT) nanocomposites prepared by melt compounding were treated under a pressure of 2.0 GPa and at three different temperatures (250, 300 and 350 °C) for 30 min. Then, all the samples were naturally cooled to room temperature from the melt prior to release of the applied pressure. The melting temperature and crystallinity of high pressure crystallized samples were shifted to a high value after the treatment temperatures under pressure. The infrared spectrum of the high pressure crystallized samples showed a considerable improvement of crystalline order, a closer packing of the polymer chains due to the shorter N? C bond length, and the presence of a large proportion of free N? H groups resulting from antiparallel chains in flat zigzag conformation. Wide‐angle X‐ray diffraction measurements indicated that the high pressure gave rise to an increase in crystallite dimensions as well as to a decrease of the distance between the crystal planes bonded by the hydrogen bond (100) planes and by the van der Waals force (010) planes. Scanning electron microscope images showed that denser texture, thicker covering layers on the tubes and regular cubic sugar‐like crystals with a lateral length of about 1.5 µm could be detected on the fracture surface of PA1010/SWNT nanocomposites crystallized under pressure. Copyright © 2012 Society of Chemical Industry  相似文献   

11.
摘要:采用热重分析法测试了聚酰胺6T/66(PA6T/66)的热稳定性,确定了热降解机理函数,通过裂解气相色谱-质谱(Py-GC-MS)法分析了PA6T/66的热裂解产物,并通过热裂解产物分析了其热降解过程。结果表明,PA6T/66在不同升温速率下的降解过程均为一步降解。通过三种“model-free”的拟合方法(KAS,FWO和Tang)确定了PA6T/66的热降解活化能平均值为224.90 kJ/mol,并通过Coats-Redfern积分法确定了其热降解机理函数类型为三级减速型反应(F3型)。进一步通过Py-GC-MS分析了PA6T/66树脂的热裂解产物为二氧化碳、环戊酮、正己胺、苯甲腈等物质,并通过热裂解产物推测了其热降解过程的反应方程式。  相似文献   

12.
宋建生 《合成纤维》2015,44(6):22-24
介绍了500 dtex/68 f聚酰胺高强丝的生产设备与工艺。在设备方面,对熔体管道进行特殊设计,采用2 500 mm长的侧吹蜂窝板,用双油嘴上油,喷丝板微孔采用环形排布,牵伸辊改为一冷三热等;在工艺方面,选择相对黏度为2.8~3.2的切片,纺丝温度270~280℃,开发适合高强丝的油剂,优化牵伸工艺等,生产出了满足客户要求的产品。  相似文献   

13.
摘要:总结了国内外对玻璃纤维(GF)增强聚酰胺6(PA6)复合材料从结构、组分、加工与成型等方面改进力学性能的研究成果,归纳出选用高强GF、增加GF含量、强化GF-树脂界面、保证GF在树脂中分散、尽可能保持GF长度等几种能够有效提高GF增强PA6复合材料力学性能的策略,指出通过对上述策略的选择与组合使用,可实现高性能GF增强PA6复合材料的制备,进而使该材料可被更广泛地应用。  相似文献   

14.
通过熔融纺丝法制备了系列聚酰胺6/黏土/聚乙二醇(PTFs)共混调温纤维,并采用傅里叶红外光谱仪、差示扫描量热仪、热红外成像仪、热失重分析仪和复丝强力仪测试了纤维的结构、热性能、调温性能和力学性能。研究显示,PTFs调温纤维的结晶温度为33℃,结晶焓值达到8.46 J/g,且在100次升降温热循环后调温纤维仍保持良好的热性能。通过模拟冷热环境交替下纤维的温度—时间响应行为发现,在热环境(90℃)和冷环境(10℃)下,调温纤维体现出明显的温度滞后响应,与纯PA6纤维相比温差达到3℃。黏土/聚乙二醇在纤维中的最大质量分数为15%,在牵伸4倍时,纤维的拉伸断裂强度达到3.15 cN/dtex。  相似文献   

15.
为满足电子电器、汽车涡轮增压发动机等对聚酰胺(PA)耐高温性能提出的更高要求,开发了一种能够获得各种黏度的耐高温聚酰胺(PA6T/66)树脂的工艺,该工艺简单,耗能低,环保安全。首先,利用熔融法和固相增黏法相结合的方式制备了不同黏度的PA6T/66,此时树脂黏度较高。其次,PA6T/66树脂在一定温度和真空度下增黏至所要求的黏度。探究了不同pH条件下制备的对苯二甲酸己二胺(6T)盐的形貌与颜色;研究了不同pH下制备的6T盐与己二酸己二胺(66)盐、聚合压力、聚合时间、封端剂用量、树脂增黏时间等对PA6T/66树脂相对黏度的影响。结果表明,各种pH条件下制备的无水6T盐为白色结晶状粉末;当6T盐与66盐质量比为55∶45时,PA6T/66树脂的熔点为307 ℃;聚合压力为2.35 MPa,聚合时间为3 h,封端剂占总盐质量0.1%,增黏时间为6 h时,制备的PA6T/66树脂达到玻纤增强、电子电器应用的要求。  相似文献   

16.
纳米PA替代PA6作基础树脂用料的研究   总被引:1,自引:0,他引:1  
介绍了纳米聚酰胺(PA)的制备方法,并在PA6的传统应用领域内将纳米PA与PA6进行了性能对比,试验证明,纳米PA具有更好的刚性、耐热性,透明性等性能,完全可以替代PA6作为基础树脂用料。  相似文献   

17.
    
The morphology evolution of miscible blends of a semicrystalline polyamide 6 (PA6) and an amorphous polyamide 6Ico6T (PA6IcoT) was investigated using an internal Brabender mixer at a temperature range 220–260°C. Morphology of the blends was characterized by scanning electron microscopy (SEM) and laser particle analysis. Temperature rising dissolution was used to separate the different phases of the blends and the phase compositions were determined by Fourier transform infrared (FTIR) spectroscopy. The particle size evolution of the dispersed phase (PA6) was calculated and agreed well with experimental observation. It was found that the particle size was quickly reduced to nanometer scale after several minutes of processing. A convection‐diffusion model was adopted to study the phase evolution during melt–melt mixing stage and compute the dimension of each phase. The results strongly support the notion of existence of distinct phases during blending, whose development can be well described by the model. The dispersed phase is reduced mainly by stretching of flow, while the broadening of the blending phase can be primarily attributed to molecular diffusion. The study also suggests the possibility to prepare novel polymer blends with nanometer sized domain of high uniformity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
在双螺杆挤出机上通过原位增容反应挤出制备了聚酰胺6(PA6)/高密度聚乙烯(PE-HD)共混物。通过力学性能测试、扫描电子显微镜观察和Molau实验,研究了PE-HD含量对PA6/PE-HD共混物的力学性能和体系增容作用的影响。结果表明,PE-HD与马来酸酐(MAH)在挤出共混过程中原位生成了PE-HD-g-MAH,其对PA6/PE-HD共混物有较好的增容作用;PA6/PE-HD共混物的力学性能与界面形态均有较大改善,吸水率有所降低。  相似文献   

19.
用MHK-500和SRV型磨损试验机测试了PA-6/PE合金的摩擦性能。结果表明,PA-6/PE合金的摩擦系数显著低于PA-6,而且克服了PA-6摩擦过程中的粘-滑现象,提高了PA-6的摩擦稳定性。  相似文献   

20.
摘要:采用大规模氢键自组装效应,成功制备了以三聚氰胺氰尿酸(MCA)为囊材,次磷酸铝为内核材料的微胶囊改性次磷酸铝(MAHP),并随后将其应用于阻燃聚酰胺6(PA6)中。阻燃剂的微胶囊形态由扫描电子显微镜(SEM)观察。阻燃PA6的阻燃性能与残炭结构分别由热重(TG)分析、垂直燃烧测试、灼热丝起燃温度(GWIT)测试、极限氧指数(LOI)测试和SEM表征。结果表明,在相同囊核比下,随着阻燃剂添加量的增大(16%~22%),复合材料的LOI值与GWIT值不断提高,且在20%时即可达到UL94 V-0等级。另外,在不同囊核比的MAHP中(相同添加量),随着囊材的增加,试样的阻燃性能先上升后下降,在囊核比为2∶8时,阻燃效果达到最佳,试样的LOI为27.1%,GWIT高达800℃,较PA6提升100℃以上。由先上升后下降的现象看出,囊核材料比对MAHP的性能有很大影响,过多的MCA会导致囊核材料间协同效应减弱,不利于阻燃PA6材料性能的提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号