首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new donor–acceptor type poly{2,2l‐(3,4‐ dialkoxythiophene‐2,5‐diyl)bis[5‐(2‐thienyl)‐1,3,4‐oxadiazole]}s ( P1, P2, and P3 ) were synthesized starting from thiodiglycolic acid and diethyl oxalate through multistep reactions. The polymerization was carried out using chemical polymerization technique. The optical and charge‐transporting properties of the polymers were investigated by UV‐visible, fluorescence emission spectroscopic and cyclic voltammetric studies. The polymers showed bluish‐green fluorescence in solutions. The electrochemical band gaps were determined to be 2.03, 2.09, and 2.17 eV for P1 , P2, and P3, respectively. The nonlinear optical properties of new polymers were investigated at 532 nm using single beam Z‐scan and degenerate four‐wave mixing (DFWM) techniques with nanosecond laser pulses. The polymers exhibited strong optical limiting behavior due to “effective” three‐photon absorption. Values of the effective three‐photon absorption ( 3PA ) coefficients, third‐order nonlinear susceptibilities (χ(3)), and figures (F) of merit were calculated. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
We report the synthesis and linear and third‐order nonlinear optical (NLO) characterization of two novel copolymers containing alternating 3,4‐dialkoxythiophene and 1,4‐bis(1,3,4‐oxadiazolyl)benzene units. The copolymers were synthesized with a precursor polyhydrazide route. Both copolymers exhibited fluorescence around 430 nm under the irradiation of UV light. The NLO measurements were made with the single‐beam Z‐scan technique with Nd:YAG nanosecond laser pulses at 532 nm. The nonlinear refractive index of the investigated copolymers was negative, and the magnitude was as high as 10?10 esu. The samples exhibited strong reverse saturation absorption and very good optical limiting properties at the wavelength used. The concentration dependence of third‐order NLO parameters was studied. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

3.
Two new π‐conjugated polymers, namely poly(p‐phenylenevinylene‐1,3,4‐oxadiazole) (PPVO) and poly(p‐(nitro‐phenylene)vinylene‐1,3,4‐oxadiazole) (PNPVO), were synthesized and characterized. The Gilch polymerization technique, using dihalo derivatives of 1,3,4‐oxadiazoles, was employed to synthesize them under mild reaction conditions. The macromolecules exhibit good solubility in dimethylformamide, formamide and dimethyl sulfoxide and thus effectively address the insolubility issues associated with many oxadiazole derivatives for device fabrication. They show bright luminescence in the blue‐green region of the electromagnetic spectrum and have optical band gaps suited for an emissive layer in organic light‐emitting devices. PPVO and PNPPO show good non‐linear optical responses also in solution phase, with third‐order nonlinear susceptibilities of the order of 10?12esu. Interestingly, they exhibit good antimicrobial characteristics under examination with Escherichia coli and Staphylococcus. The results prove that these macromolecules are ideal materials to use as emissive layers in various light‐emitting devices and NLO applications. The excellent antimicrobial activity can be utilized for their applications in clinical and healthcare areas. © 2016 Society of Chemical Industry  相似文献   

4.
The 4‐[4′‐(Hydrazinocarbonyl)phenoxy]‐2‐pentadecylbenzohydrazide was polycondensed with aromatic diacid chlorides viz., terephthalic acid chloride (TPC), isophthalic acid chloride (IPC), and a mixture of TPC : IPC (50 : 50 mol %) to obtain polyhydrazides which on subsequent cyclodehydration reaction in the presence of phosphoryl chloride yielded new poly(1,3,4‐oxadiazole)s bearing flexibilizing ether linkages and pentadecyl side chains. Inherent viscosities of polyhydrazides and poly(1,3,4‐oxadiazole)s were in the range 0.53–0.66 dL g?1 and 0.49–0.53 dL g?1, respectively, indicating formation of medium to reasonably high molecular weight polymers. The number average molecular weights (Mn) and polydispersities (Mw/Mn) of poly(1,3,4‐oxadiazole)s were in the range 14,660–21,370 and 2.2–2.5, respectively. Polyhydrazides and poly(1,3,4‐oxadiazole)s were soluble in polar aprotic solvents such as N,N‐dimethylacetamide, 1‐methyl‐2‐pyrrolidinone, and N,N‐dimethylformamide. Furthermore, poly(1,3,4‐oxadiazole)s were also found to be soluble in solvents such as chloroform, dichloromethane, tetrahydrofuran, pyridine, and m‐cresol. Transparent, flexible, and tough films of polyhydrazides and poly(1,3,4‐oxadiazole)s could be cast from N,N‐dimethylacetamide and chloroform solutions, respectively. Both polyhydrazides and poly(1,3,4‐oxadiazole)s were amorphous in nature and formation of layered structure was observed due to packing of pentadecyl chains. A decrease in glass transition temperature was observed both in polyhydrazides (143–166°C) and poly(1,3,4‐oxadiazole)s (90–102°C) which could be ascribed to “internal plasticization” effect of pentadecyl chains. The T10 values, obtained from TG curves, for poly(1,3,4‐oxadiazole)s were in the range of 433–449°C indicating their good thermal stability. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci 124:1281–1289, 2012  相似文献   

5.
Poly(p‐phenylene‐1,3,4‐oxadiazoles) (p‐PODs) spinning solution was prepared by one‐step polycondensation, and p‐POD fibers were obtained by wet spinning method using dilute sulfuric acid as coagulation bath. The morphology and mechanical properties of p‐POD fibers under different coagulating conditions, such as bath concentration and temperature, were qualitatively and quantitatively studied by microscopes, ultrasonic orientation measurement, WAXD, and other traditional methods. The microscopic observation indicated that the p‐POD fibers were of three‐layer structure which consisted of outer skin, inner skin, and the core. The skin‐core structure and surface feature of the fibers were greatly affected by the coagulating conditions. At the same time, the results of WAXD and ultrasonic orientation measurement demonstrated that the crystallinity and orientation of the fibers also varied with the change of bath conditions. The tests of mechanical properties showed that the tensile strength, elongation at break, and maximum draw ratio of the p‐POD fibers were determined by their solid‐phase structures, which were largely influenced by coagulation conditions. According to the structure analysis and the mechanical tests, the optimal coagulation parameters were chosen to obtain p‐POD fibers with denser and more regular structure and better mechanical properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
In this study, we prepared poly(3,4‐ethylenedioxythiophene) (PEDOT) via the chemical oxidation of the 3,4‐ethylenedioxythiophene monomer in a system consisting of miscible binary organic solvents, that is, acetonitrile (CH3CN) and chloroform (CHCl3). This successful technique was then used to synthesize a poly(3,4‐ethylenedioxythiophene) (PEDOT)/silver (Ag) nanocomposite as well. In this facile and efficient technique, a higher solubility of the oxidizing reagent, which originated from a relative enhancement in the polarity of the reaction medium, led to significant changes in the optical and thermal behaviors of the resulting products. To investigate the degree of validity of the technique applied, a pure sample of PEDOT (PEDOT I) was also synthesized with CHCl3 alone, and this was then compared with a sample prepared in CH3CN/CHCl3 binary solvents (PEDOT II). To prepare the PEDOT/Ag nanocomposite, first the PEDOT synthesized in binary solvents was thoroughly dissolved in a dimethyl sulfoxide solvent. Next, Ag nanopowder was uniformly dispersed in the previous solution of PEDOT with sonication. The PEDOT/Ag nanocomposite was then precipitated through the addition of a methanol nonsolvent. The approximate size of nano‐Ag within the polymer matrix was found to be about 40 nm. Scanning electron microscopy images of the pure PEDOT II and PEDOT/Ag nanocomposite exhibited an agglomerated sponge and nanospherical homogeneity, respectively. In comparison with PEDOT I, considerable redshifts in the ultraviolet–visible absorption spectra of the pure PEDOT II and PEDOT/Ag nanocomposite were observed. In addition, the thermostability order was found to be PEDOT/Ag > PEDOT II > PEDOT I at all temperatures above 300°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2707–2712, 2013  相似文献   

7.
A donor–acceptor conjugated‐type polymer, poly(thiophene‐1,3,4‐oxadiazole) (PThOD), was synthesized by one‐step polycondensation in polyphosphoric acid. PThOD was confirmed and characterized using Fourier transform infrared spectra, thermogravimetric analysis, X‐ray diffraction and UV‐visible spectra. The UV‐visible spectra showed that PThOD could absorb not only in the whole ultraviolet range from 200 to 400 nm but also in the visible light range up to 500 nm. Considering the conjugated structure of PThOD, studies were carried out of its performance for the photocatalytic degradation of various dyes, such as methyl orange, methylene blue, rhodamine B and reactive brilliant blue (RBB), under medium‐pressure Hg light source irradiation. The results showed that PThOD was an effective photocatalyst, which could degrade the four types of dye solution. Besides, visible light was also used to investigate the degradation of RBB, and the results showed that RBB could be degraded as well, though the efficiency was not as high as using the Hg lamp. The superoxide anion radical (O2??), which is one of the reactive oxide species, was detected using the nitrotetrazolium blue chloride method and considered to play a key role in photodegradation of dyes. Moreover, various scavengers were also used to further prove the function of ?. Furthermore, it was found that degradation rate could be changed by adding H+, which might be attributed to a change of adsorption capacity of PThOD. Finally, the reusability of PThOD as photocatalyst was investigated. The results indicated that the reusability efficiency of PThOD was excellent even after ten continuous rounds of use. © 2018 Society of Chemical Industry  相似文献   

8.
A series of aromatic copolyethers containing 1,3,4‐oxadiazole rings and fluorene groups was prepared by nucleophilic substitution polymerization technique of 9,9‐bis(4‐hydroxyphenyl)fluorene, 1 , or of different amounts of 1 and an aromatic bisphenol, such as 4,4′‐isopropylidenediphenol or phenolphthalein, with 2,5‐bis(p‐fluorophenyl)‐1,3,4‐oxadiazole. The polymers were easily soluble in polar solvents like N‐methylpyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, and chloroform and can be cast from solutions into thin flexible films. They showed high thermal stability, with decomposition temperature being above 425°C. The polymers exhibited a glass‐transition temperature in the range of 195–295°C, with a reasonable interval between glass‐transition and decomposition temperature. Electrical insulating properties of some polymer films were evaluated on the basis of dielectric constant and dielectric loss and their variation with frequency and temperature. The values of the dielectric constant at 10 kHz and 20°C were in the range of 3.16–3.25. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Two novel poly(1,4‐phenylenevinylene) (PPV) derivatives containing liquid crystalline oxadiazole side chains were prepared by a dehydrochlorination process. The homopolymer poly(2‐methoxy‐5‐((2‐methoxy‐phenyl)‐5‐hexyloxy‐phenyloxy‐1,3,4‐oxadiazole)‐1,4‐phenylenevinylene) (HO–PE6) is insoluble in common solvents, whereas the copolymer poly(2‐methoxy‐5‐((2‐methoxy‐phenyl)‐5‐hexyloxy‐phenyloxy‐1,3,4‐oxadiazole))‐(2‐methoxy‐5‐(2′‐ethylhexyloxy))‐1,4‐phenylenevinylene) (CO–PE6) is soluble in common solvents such as chloroform, THF, and p‐xylene. The molecular structure of CO–PE6 was confirmed by FTIR, 1H‐NMR, UV–vis spectroscopy, and polarized light microscopy. CO–PE6 showed a maximum emission at 556 nm in chloroform and at 564 nm in solid film, when excited at 450 nm. The maximum electroluminescence emission of the device indium–tin oxide (ITO)CO–PE6/Al is at 555 nm. The turn‐on voltage of LEDs based on CO–PE6 and MEH–PPV is 6.5 and 8.5 V, respectively. The electron mobility of CO–PE6 is higher than that of MEH–PPV based on the results of current–voltage and electrochemical behavior of both MEH–PPV and CO–PE6. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 396–403, 2004  相似文献   

10.
A series of poly(p‐phenylene vinylene) (PPV) derivatives with phenylene vinylene side chains (branched PPVs), PPV0, PPV1, PPV2, and PPV3, were synthesized by the Heck coupling reaction and characterized by TGA, absorption spectra, photoluminescence (PL) spectra, and electrochemical cyclic voltammetry. The branched PPVs showed two absorption peaks in the UV–vis region, corresponding to the conjugated side chains (UV absorption) and the main chains (the visible absorption). Especially the absorption spectrum of PPV3 covers a broad wavelength range from 300 to 500 nm. Introducing the electron‐donating alkoxy substituents on the PPV main chains and increasing the content of the alkoxy groups lead to bathochromic shift of both absorption and PL spectra from PPV1 to PPV2 to PPV3. The onset oxidation potential of the branched PPVs is lower by 0.1–0.2 V than that of PPV, indicating that the electron‐donating ability of the branched PPVs enhanced in comparison with that of PPV. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
A novel conjugated polymer, poly(4‐biphenylcarbonitrile) (PBPCN), was prepared using a plasma polymerization technique. The effect of the discharge power on the chemical structure and surface compositions of PBPCN thin films was investigated using Fourier transform infrared, UV‐visible absorption and X‐ray photoelectron spectroscopies. A femtosecond time‐resolved optical Kerr effect technique was applied to investigate the third‐order nonlinearity of the obtained plasma PBPCN thin films. For the first time, a non‐resonant optical Kerr effect and ultrafast response for the PBPCN thin films were observed. Copyright © 2006 Society of Chemical Industry  相似文献   

12.
Star‐shaped molecules consisting of regioregular poly(3‐hexylthiophene) (P3HT) chains as the arms, attached to either a propeller‐like triphenylamine or a planar triphenylbenzene core, have been synthesized via Suzuki coupling. The structures of the three‐arm star‐shaped poly(3‐hexylthiophene) (s‐P3HT) materials obtained were studied using Fourier transform infrared, 1H and 13C NMR, XRD, gel permeation chromatography and DSC. The s‐P3HT polymers were soluble in common organic solvents and exhibited number‐average molecular weights of 6000–7200 g mol?1. Their optical properties in solutions and in solid state films were investigated using the UV?visible absorption and photoluminescence techniques, and were compared with those of linear P3HT. © 2015 Society of Chemical Industry  相似文献   

13.
Rapid and highly efficient synthesis of novel poly(amide‐imide)s (PAIs) were achieved under microwave irradiation by using a domestic microwave oven from the polycondensation reactions of 4,4′‐carbonyl‐bis(phthaloyl‐L ‐alanine) diacid chloride [N,N′‐(4,4′‐carbonyldiphthaloyl)] bisalanine diacid chloride (1) with six different derivatives of tetrahydropyrimidinone and tetrahydro‐2‐thioxopyrimidine compounds (2a–2f) in the presence of a small amount of a nonpolar organic medium that acts as a primary microwave absorber. Suitable organic media was o‐cresol. The polycondensation proceeded rapidly and was almost completed within 10 min, giving a series of PAIs with inherent viscosities of about 0.25–0.45 dL/g. The resulting PAIs were obtained in high yield and are optically active and thermally stable. All of the above compounds were fully characterized by means of Fourier transform infrared spectroscopy, elemental analyses, inherent viscosity (ηinh), solubility test, and specific rotation. Thermal properties of the PAIs were investigated using thermogravimetric analysis. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2416–2421, 2001  相似文献   

14.
New, thermally stable polyimides and a poly(amide‐imide) containing a 1,3,4‐oxadiazole‐2‐pyridyl pendant group based on 2‐[5‐(3,5‐diaminophenyl)‐1,3,4‐oxadiazole‐2‐yl]pyridine were synthesized. The synthesis and characterization of the model compound 2‐{5‐[(3,5‐bistrimellitimido)phenyl]‐1,3,4‐oxadiazole‐2‐yl}pyridine (DIDA) were also investigated, and DIDA was used in the preparation of the poly(amide‐imide) in an ionic liquid, 1‐butyl‐3‐methylimidazolium bromide, as a polymerization solvent. The polymers were characterized by separating and characterizing the poly(amic acid) intermediates using infrared and elemental analyses. The prepared polymers were soluble in polar and aprotic solvents, such as dimethylformamide, dimethylsulfoxide, N‐methyl‐2‐pyrrolidone and dimethylacetamide. Thermal behaviour of the polymers was studied using thermogravimetric analysis and differential scanning calorimetry. The inherent viscosities of the polyimide and poly(amide‐imide) solutions were in the range 0.34–0.85 dL g?1 (in concentrated sulfuric acid with a concentration of 0.125 g dL?1 at 25 ± 0.5 °C). The removal of Co(II) from aqueous solutions was performed using one of the polyimides. It was found that this polymer had a maximum adsorption capacity and efficiency at pH = 10.0. Copyright © 2012 Society of Chemical Industry  相似文献   

15.
A novel insensitive high explosive 3,4‐bis (aminofurazano) furoxan (BAFF) was prepared using 3‐amino‐4‐acylchloroximinofurazan (ACOF) as a precursor. The molecular and crystal structures of BAFF were characterized by IR, MS, 1H NMR, 13C NMR, elemental analysis, and single crystal X‐ray diffraction. The single crystal structure of BAFF recrystallized from water is monoclinic, space group P 21/c, and ρc=1.745 g cm−3, and that recrystallized from ethanol is triclinic, space group P 1, and ρc=1.737 g cm−3. BAFF has multiple crystal forms. The calculated detonation velocity by BKW code is 8100 m s−1 (ρ=1.795 g cm−3, theoretical density calculated by quantum chemistry) and the experimental value is 7177 m s−1 (ρ=1.530 g cm−3, charge density). The tested values of impact, friction, and electrostatic spark sensitivity show that BAFF is insensitive.  相似文献   

16.
To address the issue of the aggregation in second-order nonlinear optical (NLO) polymers we developed an approach based on the synthesis of a multifunctional macromolecular chain transfer agent. The controlled monomer insertion polymerization into the main chain by a ‘reversible addition-fragmentation chain transfer’ (RAFT) mechanism allows the spatial arrangement of the NLO chromophores along the polymeric chain in order to obtain sequence-ordered polymers. In a first step, a novel trithiocarbonate based macroinitiator containing the disperse red 19 (DR19) units in the main chain was synthesized by polycondensation; in a second step, this polymeric precursor was applied to the synthesis of a sequentially ordered polymer by controlled insertion radical polymerization of styrene. Size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) data revealed that, (i) for the first time, polystyrenes (PS) bearing DR19 dyes covalently bounded were obtained, and (ii) both the insertion reaction and the length of the polystyrene segments were accurately controlled. Whatever the incorporated dye amount, all the copolymers were soluble in common solvents. Second-order optical nonlinearity in corona-poled thin films was evaluated, and second harmonic coefficients up to 80 pm/V were determined for loading ratio lower than 10 wt-% (DR19/PS). This approach opens up opportunities for the incorporation of more efficient chromophores even in apolar matrices.  相似文献   

17.
Pyromellitic dianhydride (benzene‐1,2,4,5‐tetracarboxylic dianhydride) (1) was reacted with L‐phenylalanine (2) in a mixture of acetic acid and pyridine (3 : 2) and the resulting imide‐acid [N,N′‐(pyromellitoyl)‐bis‐L‐phenylalanine diacid] (4) was obtained in quantitative yield. The compound (4) was converted to the N,N′‐(pyromellitoyl)‐bis‐L‐phenylalanine diacid chloride (5) by reaction with thionyl chloride. A new facile and rapid polycondensation reaction of this diacid chloride (5) with several aromatic diols such as phenol phthalein (6a), bisphenol‐A (6b), 4,4′‐hydroquinone (6c), 1,8‐dihydroxyanthraquinone (6d), 4,4‐dihydroxy biphenyl (6e), and 2,4‐dihydroxyacetophenone (6f) was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as o‐cresol. The polymerization reactions proceeded rapidly and are completed within 20 min, producing a series of optically active poly(ester‐imide)s with good yield and moderate inherent viscosity of 0.10–0.26 dL/g. All of the above polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these optically active poly(ester‐imide)s are reported. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2211–2216, 2002  相似文献   

18.
BACKGROUND: Various poly(arylene ethynylene)s (PAEs) have been prepared and applied as molecular wires, in sensors, in nonlinear optics and as electroluminescent materials. But, to our knowledge, there has been no attention paid to the investigation of conjugated PAEs containing both triarylamine and quinoxaline groups. The influence imparted by the introduction of triarylamine and quinoxaline on the photophysical and electrochemical properties of PAEs is of interest. RESULTS: Two kinds of novel PAE derivatives, with electron‐donating triphenylamine groups in the backbone and electron‐accepting pendent quinoxaline moieties and bearing side chains of different lengths, were successfully synthesized with the Sonogashira coupling reaction. These polymers are soluble in common organic solvents and exhibit good film‐forming ability and thermal stability. UV‐visible investigations indicate that the ground states of these materials are unaffected by the polarity of their medium. An efficient intramolecular charge transfer effect is observed from an investigation of their photoluminescence properties in different solvents. Cyclic voltammetry study reveals that these polymers possess relatively high highest occupied molecular orbital levels due to the incorporation of triphenylamine segments into the polymer backbones. CONCLUSION: Primary characterization of these novel PAE derivatives shows that they might serve as potential active materials in optoelectronic devices. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
A series of novel aromatic diamines containing cycloaliphatic moieties was synthesized by the reaction of cycloalkanones like cyclohexanone and cycloheptanone with 2,6‐dimethylaniline. The tetrimide diacid was synthesized using the prepared diamine with 3,3′,4,4′‐benzophenonetetracarboxylic acid dianhydride/pyromellitic dianhydride and p‐aminobenzoic acid. The polymers were prepared by treating the tetrimide diacid with different aromatic diamines. The structures of the monomers and polymers were identified using elemental analysis and Fourier transform infrared, 1H NMR and 13C NMR spectroscopy. The polymers show excellent solubility. The polymers are amorphous and have high optical transparency. They also show good thermal stability and their Tg value is found to be in the range 268–305 °C. Copyright © 2007 Society of Chemical Industry  相似文献   

20.
The effects of alcoholic solvents on the charge transport properties of tosylate‐doped poly(3,4‐ethylenedioxythiophene) (PEDOT‐OTs) are investigated. The use of different alcoholic solvents in the oxidative chemical polymerization of 3,4‐ethylenedioxythiophene (EDOT) with iron(III)‐p‐tosylate led to a change in the electrical conductivity of PEDOT‐OTs. For example, PEDOT‐OTs prepared from methanol shows a conductivity of 20.1 S cm?1 which is enhanced by a factor of 200 as compared to PEDOT‐OTs prepared from hexanol. The variation of charge transport properties on the use of different alcoholic solvents is consistent with the data recorded by UV‐visible and electrospin resonance (ESR) measurements. From XPS experiments, the PEDOT‐OTs samples prepared from different alcoholic solvents were found to have almost the same doping level, suggesting that the number of charge carriers is not responsible for the change in conductivity. Supported by XRD results, it was found that the use of alcoholic solvents with shorter chain length induces more efficient packing of PEDOT chains. It is proposed that the alcoholic solvents associated with the counter ion of PEDOT via hydrogen bonding give rise to a change in the molecular ordering of PEDOT chains during the polymerization step, hence enhancing or depressing the inter‐chain hopping rate of the resulting PEDOT‐OTs. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号