首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pyromellitic dianhydride‐based dianhydrides with bulky substituents, such as 1‐phenyl pyromellitic dianhydride and 1‐(4′‐trifluoromethylphenyl)pyromellitic dianhydride, were combined with bis(3‐aminophenyl)phenylphosphine oxide and 4,4′‐phenylene diamine to prepare polyimides with low coefficient of thermal expansion (~ 17 ppm/°C) and good adhesion (>100 g/mm). The polyimides were synthesized via a conventional two‐step process: preparation of poly(amic‐acid) followed by solution imidization with o‐dichlorobenzene. The molecular weights of the polyimides were controlled to 25,000 g/mol via off‐stoichiometry and the synthesized polyimides were characterized by Fourier transform infrared, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. Their intrinsic viscosity and solubility were also measured, while adhesive property was measured via T‐peel test samples of Cu/polyimide. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Summary A series of cyano-containing polyimides were synthesized from 2,6-bis(4-amino- phenoxy)benzonitrile and some aromatic dianhydride monomers by solution polycondensation. The poly(amic acid) films could be obtained by solution-cast from N-methyl-2-pyrrolidinone solutions and thermally converted into tough polyimide films. Structure and physical properties of thin films of those polyimides were measured by FTIR, TGA, dynamic mechanical analysis and LCR hitester et al. Results showed that the polyimides prepared from 2,6-bis(4-aminophenoxy)- benzonitrile and 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride or 4,4’-(hexafluoropropylidene)diphthalic anhydride exhibited more excellent energy-damping characteristic and excellent solubility in NMP, DMF, DMAc, DMSO, THF and CHCl3, whereas the polyimides from 2,6-bis(4-aminophenoxy)benzonitrile and 3,3’,4,4’-biphenyltetracarboxylic dianhydride or Pyromellitic dianhydride were insoluble in polar and nonpolar organic solvents. All polyimides indicated higher glass transition temperatures, excellent thermal stability and tensile properties. Incorporating a nitrile group into the polyimide backbone would enhance the dielectric constant of the polyimide films.  相似文献   

3.
Silicon‐containing polyimides were synthesized by solution polycondensation of bis(3,4‐dicarboxyphenyl)dimethylsilane dianhydride with 3,4‐oxydianiline and 4,4′‐oxydianiline, respectively. All the poly(amic acid) films could be obtained by solution‐casting from N,N‐dimethylacetamide solutions and thermally converted into transparent and tough polyimide films. The physical properties of thin films of those polyimides were compared by DSC, TGA, UV–visible spectroscopy, and dynamic mechanical analysis. The polyimide from bis(3,4‐dicarboxyphenyl)dimethylsilane dianhydride and 3,4‐oxydianiline exhibited superior energy‐damping characteristic, mechanical properties, and optical transparency, whereas that from bis(3,4‐dicarboxyphenyl)dimethylsilane dianhydride and 4,4′‐oxydianiline possessed higher glass‐transition temperature and thermal stability. Because of the unsymmetric structure of the polyimide from bis(3,4‐dicarboxyphenyl)dimethylsilane dianhydride and 3,4‐oxydianiline, its increasing rate of linear coefficient of thermal expansion with temperature was quicker than that of the polyimide from bis(3,4‐dicarboxyphenyl)dimethylsilane dianhydride and 4,4′‐oxydianiline. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2363–2367, 2004  相似文献   

4.
A new diamine was designed and synthesized to improve the flexibility of colorless polyimides by reducing residual stress. Four variations of colorless polyimides with the same dianhydride (4,4′-(hexafluoroisopropylidene)-diphthalic) and four different diamines (bis[4-(3-aminophenoxy)-phenyl] sulfone, bis(3-aminophenyl) sulfone, 2,2′-bis(trifluoromethyl)benzidine, and 2,2-bis(4-aminophenyl)-hexafluoropropane) were used. A series of colorless polyimides were prepared by adding the new diamine. The carbon and ether bonds between the benzene rings of the new diamine affected the flexibility and optical properties of colorless polyimide. The synthesis of the new diamine was confirmed by NMR measurements. Furthermore, the decrease in residual stress at room temperature and the glass transition temperature was confirmed. The effect of the new diamine was most evident for polyimide with a bulky and rigid structure. Though a slight yellow color appears because of the broken charge transfer complex balance, controlling the content of the new diamine will allow application of polyimides in flexible display.  相似文献   

5.
A novel approach to prepare a polyimide nanofoam was explored by using a polyimide precursor grafted with a labile poly(propylene glycol) (PPG) oligomer. The PPG‐grafted polyimide precursor, poly((amic acid)‐co‐(amic ester)), was synthesized via partial esterification of poly(amic acid) derived from pyromellitic dianhydride (PMDA) and 4,4′‐oxydianiline (ODA) with bromo‐terminated poly(propylene glycol) in the presence of K2CO3 in hexamethylphosphoramide and N‐methylpyrrolidone. The precursor polymer film was spin‐coated onto a glass substrate, then imidized at 200 °C under nitrogen, and subsequently the PPG graft was decomposed by heating the film at 300 °C for 9 h in air, resulting in the PMDA/ODA polyimide nanofoam. The precursor polymers, polyimides and foamed polyimides were characterized by a variety of techniques including 1H‐NMR spectroscopy, Fourier‐transform infrared (FT‐IR) spectroscopy, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The homogeneously distributed nano‐sized pores of 20–40 nm were observed by transmission electron microscopy (TEM) of the foamed polyimide. Copyright © 2004 Society of Chemical Industry  相似文献   

6.
2‐(4‐Aminophenyl)‐5‐aminopyrimidine (4) is synthesized via a condensation reaction of vinamidium salts and amidine chloride salts, followed by hydrazine palladium catalyzed reduction. A series of novel homo‐ and copolyimides containing pyrimidine unit are prepared from the diamine and 1,4‐phenylenediamine (PDA) with pyromellitic dianhydride (PMDA) or 3,3′,4,4′‐biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two‐step thermal imidization method. The poly(amic acid) precursors had inherent viscosities of 0.97–4.38 dL/g (c = 0.5 g/dL, in DMAc, 30°C) and all of them could be cast and thermally converted into flexible and tough polyimide films. All of the polyimides showed excellent thermal stability and mechanical properties. The glass transition temperatures of the resulting polyimides are in the range of 307–434°C and the 10% weight loss temperature is in the range of 556–609°C under air. The polyimide films possess strength at break in the range of 185–271 MPa, elongations at break in the range of 6.8–51%, and tensile modulus in the range of 3.5–6.46 GPa. The polymer films are insoluble in common organic solvents, exhibiting high chemical resistance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5871–5876, 2006  相似文献   

7.
A new diamine was synthesized using bisphenol‐A and p‐amino benzoic acid. Polyimides I and II were prepared with the diamine and pyromellitic dianhydride/3,3′,4,4′ benzophenone tetracarboxylic acid dianhydride. Bismaleimide (BMI) was synthesized using the same diamine and maleic anhydride. The prepared diamine and polyimides were characterized using FTIR. Thermo gravimetric analysis was used to study the thermal properties of synthesized polyimides and BMI. Woven glass fabric/unidirectional glass fiber‐polyimide/BMI composites were made and their properties (fiber volume fraction, density, tensile, flexural, impact, and hardness) were studied and compared with a few representative carbon fiber polyimide, carbon fiber–epoxy, and glass fiber–epoxy composites. The prepared composites were subjected to thermal aging and moisture absorption and their effects on tensile and flexural properties were studied. POLYM. COMPOS., 28: 372–380, 2007. © 2007 Society of Plastics Engineers  相似文献   

8.
Polyamides and polyimides containing diamines, with potential non-linear optical characteristics, were prepared using (E)-4,4′-[[[2-(4-pyridinyl)ethenyl]phenyl]amino]bis[benzenamine] and (E)-4-4′-[[[2-(4-pyridinyl)ethenyl]2-methyl phenyl]amino]bis[benzenamine] condensed with pyromellitic dianhydride to obtain poly(amic acid)s. The poly(amic acid)s were soluble in polar aprotic solvents, such as dimethylformamide, dimethylsulphoxide and dimethylacetamide, and could be cast into transparent, tough, flexible films. Amorphous thermally stable polyimides were formed by cyclodehydration. Similarly, (E)-4,4′-[[[2-(4-pyridinyl)ethenyl]phenyl]methylene]bis[benzenamine] and (E)-4,4′-[[[2-(4-pyridinyl)ethenyl]phenyl]methylene]bis[N-ethylbenzenamine] were condensed with 3-methyladipoyl chloride to obtain other new polyamides. Characterisation using infra-red and nuclear magnetic resonance spectroscopy, X-ray diffraction and thermogravimetric analysis are reported. © 1997 SCI.  相似文献   

9.
Four different mercaptoalkyl-substituted calixarene derivatives (5,11,17,23-tetra-tert-butyl-25,27-bis(3-mercaptopropoxyl)-26,28-dihydroxycalix[4]arene, 25,27-bis(3-mercaptopropoxyl)-26,28-dihydroxycalix[4]arene, 25,27-bis(5-mercaptopentanoxyl)-26,28-dihydroxycalix[4]arene and 5,17-di-tert-butyl-11,23-di-carboxyl-26,28-bis(3-mercaptopropoxyl)-25,27-di-hydroxycalix[4]arene) were synthesized. Their structures were characterized by Fourier transform infrared spectroscopy (FTIR), 1H and 13C NMR spectroscopy, and elemental analysis techniques. Moreover, their extraction capabilities at different parameters such as pH, shaking speed, and shaking time were examined toward dichromate ions. Results implied that all mercaptoalkyl-substituted calixarene derivatives showed an extraction capability toward dichromate anion while the carboxyl-functionalized calixarene-marcapto-alkyl derivative exhibited the highest extraction capability.  相似文献   

10.
A diamine containing a pendant phenoxy group, 1-phenoxy-2,4-diaminobenzene, was synthesized and condensed with different aromatic dianhydrides [4,4′-oxydiphthalic dianhydride, 4,4′-(hexafluoroisopropylidene)diphthalic anhydride, 3,3′,4,4′-benzophenone tetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracorboxylic dianhydride, and pyromellitic dianhydride] by one-step synthesis at a high temperature in m-cresol to obtain polyimides in high yields. Most of the polyimides exhibited good solvent solubility and could be readily dissolved in chloroform, sym-tetrachloroethane, N,N-dimethylformamide, N,N-dimethylacetamide, and nitrobenzene. Their inherent viscosities were in the range of 0.33–1.16 dL/g. Wide-angle X-ray spectra revealed that these polymers were amorphous in nature. All these polyimides were thermally stable, having initial decomposition temperatures above 500°C and glass-transition temperatures in the range of 248–281°C. The gas permeability of 4,4′-oxydiphthalic dianhydride and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride based polyimides was investigated with pure gases: He, H2, O2, Ar, N2, CH4, and CO2. A polyimide containing a  C(CF3)2 linkage showed a good combination of permeability and selectivity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

11.
A bis(ether amine) III-A containing a cyclohexane cardo group, 1,1-bis[4-(4-aminophenoxy)phenyl]cyclohexane, was synthesized and used as a monomer to prepare polyimides VI-A with six commercial dianhydrides via three different procedures. The intermediate poly(amic acid)s had inherent viscosities of 0.83–1.69 dL g−1 and were thermally or chemically converted into polyimides. Polyimides were also prepared by high-temperature direct polymerization in m-cresol and had inherent viscosities higher than the thermally or chemically cyclodehydrated ones. To improve the solubility of polyimides, six copolyimides were also synthesized from bis(ether amine) III-A with a pair of dianhydrides, which contained 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride or 4,4′-hexafluoroisopropylidenediphthalic anhydride. Series VI-A polyimides were characterized by the good physical properties of their film-forming ability, thermal stability, and tensile properties. A comparative study of the properties, with the corresponding polyimides derived from 2,2-bis[4-(4-aminophenoxy)phenyl]propane, is also presented. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2750–2759, 2001  相似文献   

12.
A series of novel solvent‐soluble polyimides based on the diamine of 3,3‐bis[4‐(4‐aminophenoxy)phenyl] phthalide (BAPP) were prepared. The effects of the dianhydride structures on the pervaporation performance of aqueous alcohol mixtures through these polyimide membranes were studied. The BAPP‐based polyimide membranes exhibited water permselectivity during all process runs. The permeation rate increased with the addition of bulky groups to the polyimide backbone. The effects of the feed solution concentration, feed solution temperature, and carbon atom number of the feed alcohol on the pervaporation performance were also investigated systematically. Optimum pervaporation results, a separation factor of 22 and a permeation rate of 270 g/m2 h, were obtained for a 90 wt % feed aqueous ethanol solution through a 3,3′,4,4′‐biphenyl tetracarboxylic dianhydride polyimide membrane at 25°C. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2046–2052, 2005  相似文献   

13.
A new diacetamido‐diamine monomer, N′‐[7‐(acetyl‐4‐aminoanilino)‐9,9‐dioctylflouren‐2‐yl]‐N′‐4‐aminophenyl) acetamide (ADOAc), with flourene‐based structure was prepared from the reaction of 4‐aminoacetanillide with 2,7‐dibromo‐9,9‐dioctylfluorene in the presence of 10 mol % CuI, 20 mol % N,N′‐dimethylethylene diamine as catalyst and K2CO3 as base. Two new flourene‐ring containing polyimides were prepared from the reaction of ADOAc with aromatic dianhydrides such as pyromellitic dianhydride (PMDA) and 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA) via chemical imidization of poly(amic acid). The new diamine and the related polyimides were characterized by using conventional methods such as FT‐IR, NMR, and elemental analysis. The polyimides obtained from the reaction of ADOAc with PMDA (PIa) and of ADOAc with BTDA (PIb) had inherent viscosity of 0.49 and 0.58 dL/g respectively, and showed excellent solubility in a variety of organic solvents. The polyimides of PIa and PIb showed excellent thermal stability with 10% weight loss in nitrogen atmosphere at temperatures of 418°C and 407°C and Tg of 172°C and 167°C, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
2,2′‐Position aryl‐substituted tetracarboxylic dianhydrides including 2,2′‐bis(biphenyl)‐4,4′,5,5′‐biphenyl tetracarboxylic dianhydride and 2,2′‐bis[4‐(naphthalen‐1‐yl)phenyl)]‐4,4′,5,5′‐biphenyl tetracarboxylic dianhydride were synthesized. A new series of aromatic polyimides (PIs) were synthesized via a two‐step procedure from 3,3′,4,4′‐biphenyl tetracarboxylic dianhydride and the newly synthesized tetracarboxylic dianhydrides monomers reacting with 2,2′‐bis[4′‐(3″,4″,5″‐trifluorophenyl)phenyl]‐4,4′‐biphenyl diamine. The resulting polymers exhibited excellent organosolubility and thermal properties associated with Tg at 264 °C and high initial thermal decomposition temperatures (T5%) exceeding 500 °C in argon. Moreover, the fabricated sandwich structured memory devices of Al/PI‐a/ITO was determined to present a flash‐type memory behaviour, while Al/PI‐b/ITO and Al/PI‐c/ITO exhibited write‐once read‐many‐times memory capability with different threshold voltages. In addition, Al/polymer/ITO devices showed high stability under a constant stress or continuous read pulse voltage of ? 1.0 V. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
A series of polyimide and copolyimide films were prepared by film casting, drying, and thermal imidization from the respective precursor poly(amic acid) (PAA) and copoly(amic acid) solutions derived from two dianhydrides, pyromellitic dianhydride (PMDA) and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), and two diamines, 4,4′-oxydianiline (ODA) and a proprietary aromatic diamine (PD) as monomers. Depending on the solution's inherent viscosity value (molecular weight) and the nature of the polymer chains (derived from rigid or flexible monomers), precursor poly(amic acid) and copoly(amic acid) solution concentrations of 8–12% (w/w) were found to be suitable for the preparation of good quality polyimide/copolyimide films. The recovery of film toughness and creasability from the brittleness at the intermediate temperature of the cure cycle depended not only on the molecular weight of the precursor poly(amic acids)/copoly(amic acids) but also on their chain flexibility. The poly(amic acid) derived from both rigid dianhydride and diamine practically gave rise to a brittle film of polyimide even after curing to 360°C. The resulting polyimide and copolyimide films were compared with Du Pont's Kapton H film. The density of the films was in the range 1.39–1.42 g/cm3. The thickness of most of the films was in the range 20–30 μm. The HPF 3 film, based on PMDA–PD, appeared to be highly colored (reddish brown), and the HPF 2 film, based on BTDA–ODA, had the lightest yellow coloring among the films in this investigation, including Kapton H film. HPF 2, HPF 6, and HPF 8 films were more amorphous than the other films. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 976–988, 2001  相似文献   

16.
Summary Nanoscale blending of aromatic and aliphatic polyimides has been attempted by employing corresponding poly(amic acid) precursors in order to elucidate clues for achieving a semi-molecular composite film. Pyromellitic dianhydride (PMDA) and 4,4’-oxydianiline (ODA) were used to make the precursor polymer of aromatic polyimide (PMDA-ODA PI) as a semi-rigid rod-like component, whilst bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BOCA) and 4,4’-methylenebis(cyclohexylamine) (MCA) were used to prepare the precursor of aliphatic polyimide (BOCA-MCA PI) as a flexible coil-like component. The weight ratio of aromatic to aliphatic polyimides was varied from 100:0: to 0:100 by 10 wt % gap for monitoring the critical composition upon nanostructure changes. The micro/nanostructure of composite films was characterized by using small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD), while the evolution and thermal property of semi-molecular composites were studied by using FT-IR spectroscopy and dynamic mechanical thermal analysis (DMTA). The result showed that the composite films exhibited a single glass transition behavior, which is ascribed to the molecular level mixing, in the presence of copolyimide fractions.  相似文献   

17.
The dianhydride monomer 3,3′,4,4′‐benzophenone tetracarboxylic acid dianhydride and two diamine monomers, 4,4′‐diamino‐3,3′‐biphenyldiol (HAB) and 2,4‐diaminophenol dihydrochloride (DAP), were used to synthesize a series of poly(hydroxyl amic acid). Further functionalization by grafting acrylate groups yields the corresponding poly(acrylate amic acid) that underwent a crosslinking reaction on exposure to UV‐light and was used as a negative‐tone photosensitive polyimide (PSPI). The analysis of chemical composition and molecular weight of these poly(amic acid)s determined by nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared spectroscopy, and gel permeation chromatography revealed that the molecular weight of the poly(hydroxyl amic acid) increased with the molar content of HAB in the feedstock, because HAB exhibited higher polymerization reactivity than DAP. Moreover, the degree of grafting acrylate groups onto poly(hydroxyl amic acid) was determined by 1H‐NMR spectroscopy. The photoresist was formulated by adding 2‐benzyl‐2‐N,N‐dimethylamino‐1‐(4‐morpholinophenyl) butanone (IRG369) and isopropylthioxanthone as a photoinitiator, tetra(ethylene glycol) diacrylate as a crosslinker, and tribromomethyl phenyl sulfone as a photosensitizer. The PSPI precursor exhibited a photosensitivity of 200 mJ/cm2 and a contrast of 1.78. A pattern with a resolution of 10 μm was observed in an optical micrograph after thermal imidization at 300°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
4,4′‐Diamino‐3,3′‐dimethyldiphenylmethane was used to prepare polyimides in an attempt to achieve good organo‐solubility and light color. Polyimides based on this diamine and three conventional aromatic dianhydrides were prepared by solution polycondensation followed by chemical imidization. They possess good solubility in aprotonic polar organic solvents such as N‐methyl 2‐pyrrolidone, N,N‐dimethyl acetamide, and m‐cresol. Polyimide from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and diphenylether‐3,3′,4,4′‐tetracarboxylic acid dianhydride is even soluble in common solvents such as tetrahydrofuran and chloroform. Polyimides exhibit high transmittance at wavelengths above 400 nm. The glass transition temperature of polyimide from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and pyromellitic dianhydride is 370°C, while that from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and diphenylether‐3,3′,4,4′‐tetracarboxylic acid dianhydride is about 260°C. The initial thermal decomposition temperatures of these polyimides are 520–540°C. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1299–1304, 1999  相似文献   

19.
用2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)和4-苯基-2,6-双(4.氨基苯基)吡啶(PBAP)作为二胺,3,3’,4,4'-二苯酮四酸二酐(BTDA)作为二酐,以N,N-二甲基甲酰胺(DMF)为溶剂,合成了3种聚酰亚胺。先用BAPP和PBAP同BTDA反应生成一系列聚酰胺酸(PAA),然后将得到的PAA用化学亚胺化制备相应的聚酰亚胺。用FT-IR、^1H—NMR、粘度测试、溶解性测试和TGA对聚合物的结构和性能进行了表征。结果表明,FT—IR测试在1780cm^-1、1720cm^-1和725cm^-1左右出现了聚酰亚胺的特征吸收峰,所得聚酰胺酸的特性粘数为0.32~0.46dL/g,大部分聚酰亚胺在常见有机溶剂NMP中可溶,它们有很好的热稳定性,氮气氛中,在500℃以前没有明显的降解。  相似文献   

20.
Silane-endcapped polyimide high temperature adhesive formulations were prepared by reacting anhydride-terminated poly(amic acid), obtained from benzophenonetetracarboxylic dianhydride and a diamine (3,3′-, 3,4′- or 4,4′ -diaminodiphenylmethane and 3,3′, 3,4′- or 4,4′ -diaminobenzophenone) with varying amounts of γ-aminopropyltriethoxysilane in dimethylacetamide. Resin properties were evaluated by torsional braid analysis and thermogravimetric analysis. Lap shear strengths of some of the adhesive bonds were determined at room temperature and at 177°C before and after ageing at 200°C for 2500 h and after boiling in water for 72 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号