首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel charring agent (CNCA‐DA) containing triazine and benzene ring, using cyanuric chloride, aniline, and ethylenediamine as raw materials, was synthesized and characterized. The effects of CNCA‐DA on flame retardancy, thermal degradation, and flammability properties of polypropylene (PP) were investigated by limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis (TGA), and cone calorimeter test (CCT). The TGA results showed that CNCA‐DA had a good char forming ability, and a high initial temperature of thermal degradation; the char residue of CNCA‐DA reached 18.5% at 800°C; Ammonium polyphosphate (APP) could improve the char residue of APP/CNCA‐DA system, the char residue reached 31.6% at 800°C. The results from LOI and UL‐94 showed that the intumescent flame retardant (IFR) containing CNCA‐DA and APP was very effective in flame retardancy of PP. When the mass ratio of APP and CNCA‐DA was 2 : 1, and the IFR loading was 30%, the IFR showed the best effect; the LOI value reached 35.6%. It was also found that when the IFR loading was only 20%, the flame retardancy of PP/IFR can still pass V‐0 rating in UL‐94 tests, and its LOI value reached 27.1%. The CCT results demonstrated that IFR could clearly change the decomposition behavior of PP and form a char layer on the surface of the composites, consequently resulting in efficient reduction of the flammability parameters, such as heat release rate (HRR), total heat release (THR), smoke production rate (SPR), total smoke production (TSP), and mass loss (ML). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
Synergistic flame‐retardant effect of halloysite nanotubes (HNTs) on an intumescent flame retardant (IFR) in low‐density polyethylene (LDPE) was investigated by limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis (TGA), cone calorimeter (CC) test, and scanning electronic microscopy (SEM). The results of LOI and UL‐94 tests indicated that the addition of HNTs could dramatically increase the LOI value of LDPE/IFR in the case that the mass ratio of HNTs to IFR was 2/28 at 30 wt % of total flame retardant. Moreover, in this case the prepared samples could pass the V‐0 rating in UL‐94 tests. CC tests results showed that, for LDPE/IFR, both the heat release rate and the total heat release significantly decreased because of the incorporation of 2 wt % of HNTs. SEM observations directly approved that HNTs could promote the formation of more continuous and compact intumescent char layer in LDPE/IFR. TGA results demonstrated that the residue of LDPE/IFR containing 2 wt % of HNTs was obviously more than that of LDPE/IFR at the same total flame retardant of 30 wt % at 700°C under an air atmosphere, and its maximum decomposing rate was also lower than that of LDPE/IFR, suggesting that HNTs facilitated the charring of LDPE/IFR and its thermal stability at high temperature in this case. Both TGA and SEM results interpreted the mechanism on the synergistic effect of HNTs on IFR in LDPE, which is that the migration of HNTs to the surface during the combustion process led to the formation of a more compact barrier, resulting in the promotion of flame retardancy of LDPE/IFR. In addition, the mechanical properties of LDPE/IFR/HNTs systems were studied, the results showed that the addition of 0.5–2 wt % of HNTs could increase the tensile strength and the elongation at break of LDPE/IFR simultaneously. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40065.  相似文献   

3.
A novel flame retardant, tetra(5,5‐dimethyl‐1,3‐ dioxaphosphorinanyl‐2‐oxy) neopentane (DOPNP), was synthesized successfully, and its structure was characterized by FT‐IR, 1H NMR, and 31P NMR. The thermogravimetric analysis (TGA) results demonstrate that DOPNP showed a good char‐forming ability. Its initial decomposition temperature was 236.4°C based on 1% mass loss, and its char residue was 41.2 wt % at 600°C, and 22.9 wt % at 800°C, respectively. The flame retardancy and thermal degradation behavior of novel intumescent flame‐retardant polypropylene (IFR‐PP) composites containing DOPNP were investigated using limiting oxygen index (LOI), UL‐94 test, TGA, cone calorimeter (CONE) test, and scanning electron microscopy (SEM). The results demonstrate that DOPNP effectively raised LOI value of IFR‐PP. When the loading of IFR was 30 wt %, LOI of IFR‐PP reached 31.3%, and it passed UL‐94 V‐0. TGA results show that DOPNP made the thermal decomposition of IFR‐PP take place in advance; reduced the thermal decomposition rate and raised the residual char amount. CONE results show that DOPNP could effectively decrease the heat release rate peak of IFR‐PP. A continuous and compact char layer observed from the SEM further proved the flame retardance. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

4.
ABSTRACT

The synergistic effects of aluminum hypophosphite (AHP) on the flame retardancy, thermal degradation behaviors of a novel intumescent flame retardant thermoplastic vulcanizate (TPV/IFR) composite were investigated. The results showed that the combination of AHP with IFR showed evident synergistic effects on the increase in the LOI value and reduction of the combustion parameters for the TPV/IFR/AHP composites at the optimum weight ratio of IFR/AHP (6/1) as evidenced by LOI, UL-94 and CCT. The TGA data revealed that AHP could change the degradation behavior of TPV/IFR composites and enhance the thermal stability of the TPV/IFR composites at high temperature. The results of FTIR, EDXS, LRS and SEM demonstrated that TPV/IFR/AHP composites could form more continuous, dense and stable char layer on the materials surface, and consequently improving the flame retardancy. Based on these results, the possible condensed flame retardant mechanism of TPV/IFR/AHP composites was concluded in detail.  相似文献   

5.
Supported nickel catalyst (Ni‐Cat) was used as a catalyst to improve the flame retardancy of intumescent flame‐retardants (IFR) systems based on ammonium polyphosphate and pentaerythritol (PETOL) in polypropylene (PP) matrix. Limited oxygen index (LOI), UL‐94 rating, and thermogravimetric analysis were used to characterize the flame retardancy and thermal stability of the PP systems, and field emission scanning electron microscopy (FE‐SEM) and Fourier transformed infrared spectroscopy (FTIR) were used to analyze the microstructure and composition of the chars formed during measuring LOI value and after combustion at 800°C. The catalytic effect of Ni‐Cat was shown in an increase of LOI, a change in the char microstructure, and improvement of the thermal stability in the PP systems, which result from the synergistic effect of Ni‐Cat and IFR. The results from FE‐SEM and FTIR spectra of the char can explain how this synergistic effect happened. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5988–5993, 2006  相似文献   

6.
The synergistic effects of fumed silica on the thermal and flame‐retardant properties of intumescent flame retardant (IFR) polypropylene based on the NP phosphorus‐nitrogen compound have been studied by Fourier transfer infrared (FTIR) spectroscopy, cone calorimeter test (CCT), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), limiting oxygen index (LOI), and UL‐94 tests. The LOI and UL‐94 data show that when ≤1 wt % fumed silica substituted for the IFR additive NP can increase 2 to 4% LOI values of the PP blends and keep the V‐0 rating. The data obtained from the CCT tests indicate the heat release rates (HRR) reduce by about 23% for the PP/NP sample with 0.5 wt % fumed silica, whereas the mass loss rates (MLR) and total heat release (THR) values are much lower than those of the PP/NP samples without fume silica. The TGA data demonstrate that a suitable amount of fumed silica can increase the thermal stability and charred residue of the PP/IFR/SiO2 blends after 500°C. The morphological structures of charred residues observed by SEM give positive evidence that a suitable amount of fumed silica can promote the formation of compact intumescent charred layers and prevent the charred layers from cracking, which effectively protects the underlying polymer from burning. The dynamic FTIR spectra reveal that the synergistic flame‐retardant mechanism of a suitable amount of fumed silica with IFR additive is due to its physical process in the condensed phases. However, a high loading of fumed silica restricts the formation of charred layers with P? O? P and P? O? C complexes formed from burning of polymer materials and destroys the swelling behavior of intumescent charred layers, which deteriorates the flame retardant and thermal properties of the PP/IFR blends. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
The synergistic effects of some metal oxides on novel intumescent flame retardant (IFR)–thermoplastic polyurethane (TPU) composites were evaluated by limiting oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis (TGA), cone calorimetry, and scanning electron microscopy. The experimental data indicated that the metal oxides enhanced the LOI value and restricted the dropping of the composites. The IFR–TPU composites passed the UL‐94 V‐0 rating test (1.6 mm) in the presence of magnesium oxide (MgO) and ferric oxide (Fe2O3) at 35 wt % IFR loading, whereas only the MgO‐containing IFR–TPU composite reached a UL‐94 V‐0 rating at 30 wt % IFR loading. The TGA results show that the metal oxides had different effects on the process of thermal degradation of the IFR–TPU compositions. MgO easily reacted with polyphosphoric acid generated by the decomposition of ammonium polyphosphate (APP) to produce magnesium phosphate. MgO and Fe2O3 showed low flammability and smoke emission due to peak heat release rate, peak smoke production rate, total heat release, and total smoke production (TSP). However, zinc oxide brought an increase in the smoke production rate and TSP values. Among the metal oxides, MgO provided an impressive promotion on the LOI value. The alkaline metal oxide MgO more easily reacted with APP in IFRs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
The structures of the intumescent charred layers formed from polyolefin (PO) blends with expandable graphite (EG) and/or the other free‐halogen flame retardant (HFFR) and their flame‐retardant mechanism were studied by Fourier transform infrared (FTIR) spectroscopy, X‐ray photoelectron spectroscopy (XPS), laser Raman spectroscopy (LRS), scanning electron microscopy (SEM), differential thermal analysis (DTA), and thermal conductivity (TC) measurements. The FTIR, XPS, and LRS data showed that the carbonaceous structures of intumescent charred layers consist of EG and various numbers of condensed benzene rings and/or phosphocarbonaceous complexes attached by the P—O—C and P—N bonds or quaternary nitrogen or dehydrated zinc borate (ZB). These results and the morphologic structures observed by SEM have demonstrated that the compact structures of charred layers slow down heat and mass transfer between the gas and condensed phase and prevent the underlying polymeric substrate from further attack by heat flux in a flame. The DTA data provide the positive evidence for the flame‐retardant mechanism of the PO/EG/HFFR systems, which works by increasing the oxidation temperature and decreasing thermal oxidation heat. At the same time, the TC data reveal the flame‐retardant essence of the charred layers as good heat‐insulated materials whose TC value is only about 1/10 of the corresponding blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1190–1197, 2001  相似文献   

9.
This paper is aimed to illustrate the structure and thermal property of intumescent char produced by flame‐retardant polymers containing expandable graphite (EG). For this purpose, high‐impact polystyrene (HIPS) flame retarded by EG individually or in combination with microencapsulated red phosphorus (MRP) was prepared. The results indicate that the intumescent char from HIPS/EG/MRP composite, which contains a small amount of phosphorus element and more oxygen element, is much more compact and continuous than that from HIPS/EG composite with identical loading of flame retardant due to binding effect of phosphoric acid and its derivatives. The intumescent char produced by HIPS/EG/MRP composite exhibits much enhanced thermal and thermo‐oxidative stability as well as thermal‐insulating effect, which can withstand destruction of heat and oxygen effectively and thus provide a good fire‐proof barrier. The temperature beneath this intumescent char is decreased significantly in case of action by flame. By comparison, the porous and loose intumescent char generated by HIPS/EG composite has poor thermo‐oxidative endurance, and most of it can be consumed in air at high temperature without effective protection for the polymer. This has resulted in remarkable increase in flame retardancy of the HIPS/EG/MRP composite.  相似文献   

10.
After a series of investigations on the durable flame‐retardant finishes, it was thought to be important to study these durable flame‐retardant finished materials from the thermal analytical standpoint. Accordingly, cotton fabric was finished with N‐methylol dialkyl phosphonopropionamide (Pyrovatex C) by thermofixation and tetrakis (hydroxymethyl) phosphonium sulfate (THPS) precondensate by ammonia cure (Proban), as well as with THPS monomer by heat cure under various conditions, and subjected to the thermogravimetry (TG) to observe thermal degradation behaviors and obtain apparent activation energy (Ea). TG curves of Proban‐finished samples showed the largest shift to lower temperatures with a steep slope; thermofixed THPS‐finished sample gave a smaller shift with similar steep slope, whereas Pyrovatex‐finished samples exhibited a similar shift but with a gradual slope. Ea versus residual ratio curves led us to conclude that C N bond‐rich Proban polymer requires the highest Ea and decomposes with considerable rapidity, whereas ethylene‐bond‐rich Pyrovatex‐finished samples with melamine crosslinking decompose gradually with the lowest Ea. As for the relationship between flame retardance and Ea distribution in the process of thermal degradation, typical differences among the above three kinds of finished samples were found, which are compared and discussed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 975–987, 1999  相似文献   

11.
The N‐[3‐(dimethoxy‐methyl‐silanyl)‐propyl]‐N′‐ (9‐methyl‐3,9‐dioxo‐2,4,8,10‐tetraoxa‐3,9‐diphospha‐spiro[5.5]undec‐3‐yl)‐ethane‐1,2‐diamine/dimethoxy dimethyl silane copolymer (PSiN II), which simultaneously contains silicon, phosphorus, and nitrogen, is synthesized and incorporated into polypropylene (PP). The flame retardancy is evaluated by the limiting oxygen index value, which is enhanced to 29.5 from 17.4 with 20% total loading of PSiN II. The thermal degradation behavior of PP/PSiN II is investigated by thermogravimetric analysis under N2 and air. The PP/PSiN II sample degrades at 400°C for different amounts of time, and the process of degradation is studied by Fourier transform IR. The morphology of the char formed at 400°C for 10 min is investigated by scanning electron microscopy. The swollen inner structure, close, and smooth outer surface provide a much better barrier for the transfer of heat and mass during fire and good flame retardancy. The thermal stability of PP is improved by incorporation of PSiN II. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2487–2492, 2005  相似文献   

12.
Pentaerythritol diphosphonate melamine–dicyandiamide–formaldehyde resin salt, a novel macromolecular intumescent flame retardants (IFR), was synthesized, and its structure was a caged bicyclic macromolecule containing phosphorus characterized by IR, NMR and element analysis. The flame retardancy and thermal behavior of a new IFR system for epoxy resin were investigated by LOI, UL‐94 test, TG, and IR. Activation energy for the decomposition of samples was obtained using Kissinger equation. 25% of weight of IFR were doped into epoxy resin to get 27.5 of LOI and UL 94 V‐0. The TG curves and IR spectra show that IFR decreases the initial decomposition temperature and the maximum weight loss rate of epoxy resin, and enhances the thermal stability of epoxy resin at high temperatures and char yield. The activation energy for epoxy resin containing IFR was decreased by 44.8 kJ/mol, which shows that IFR can catalyze decomposition of epoxy resin. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
The first part of this investigation focused on the synthesis and characterization of a hyperbranched intumescent flame‐retardant (HIFR) agent. Two steps were used in the synthetic process. The structure was characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). The second part focused on the application of HIFR agent into natural rubber (NR) composites. The cure characteristics, tensile properties, wear resistance, and flame‐retardant property of HIFR/NR composites were evaluated. It was demonstrated that the addition of this HIFR agent into NR led to an improvement in its physicomechanical and flame‐retardant properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

14.
Mesoporous silica SBA‐15 synthesized from Pluronic P123 and tetraethoxysilane was used as a synergistic agent on the flame retardancy of polypropylene (PP)/intumescent flame‐retardant (IFR) system. Limiting oxygen index (LOI), UL‐94 rating and thermogravimetric analysis were used to evaluate the synergistic effect of SBA‐15 on PP/IFR system. It showed that PP/IFR system could reach V‐0 with loading of SBA‐15 ranging from 0.5 to 3 wt%, while without SBA‐15 it had no rating at UL‐94 test. The LOI value increased from 25.5 to 32.2 when the loading of SBA‐15 was 1 wt%. The thermal stability of PP/IFR was improved in the presence of SBA‐15 and the amount of the char residue at 600° C was increased from 8.96 to 16.42 wt% when loading of SBA‐15 varied from 0.5 to 5 wt%. Laser Raman spectroscopy (LRS) and scanning electron microscopy were employed to study the morphology of the char residue of PP/IFR system with and without SBA‐15. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A new intumescent flame retardant (IFR) system consisting of ammonium polyphosphate (APP) and charing‐foaming agent (CFA) and a little organic montmorillonite (OMMT) was used in low‐density polyethylene (LLDPE)/ethylene‐vinyl acetate (EVA) composite. According to limiting oxygen index (LOI) value and UL‐94 rating obtained from this work, the reasonable mass ratio of APP to CFA was 3 : 1, and OMMT could obviously enhance the flame retardancy of the composites. Cone calorimeter (CONE) and thermogravimetric analysis (TGA) were applied to evaluate the burning behavior and thermal stability of IFR‐LLDPE/EVA (LLDPE/EVA) composites. The results of cone calorimeter showed that heat release rate peak (HRR‐peak) and smoke production rate peak (SPR‐peak) and time to ignition (TTI) of IFR‐LLDPE/EVA composites decreased clearly compared with the pure blend. TGA data showed that IFR could enhance the thermal stability of the composites at high temperature and effectively increase the char residue. The morphological structures of the composites observed by scanning electron microscopy (SEM) and X‐ray diffraction (XRD) demonstrated that OMMT could well disperse in the composites without exfoliation, and obviously improve the compatibility of components of IFR in LLDPE/EVA blend. The morphological structures of char layer obtained from Cone indicated that OMMT make the char layer structure be more homogenous and more stable. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
The thermal degradation behavior of the blend based on polylactide (PLA) and poly(1,2‐propanediol 2‐carboxyethyl phenyl phosphinate) (PCPP) was investigated by the thermogravimetric analysis (TGA). Thermal degradation activation energies (Ea) of neat PLA and PLA/15% PCPP blend were calculated via the Flynn–Wall–Ozawa method. The Ea of the blends increased with the addition of PCPP increasing when the conversion was higher than 10%. In addition, the appropriate conversion models for the thermal degradation process of PLA and PLA/15% PCPP were studied via the Criado method. At the same time, the main gaseous decomposition products of PLA and its blend were identified by TGA/infrared spectrometry (TGA–FTIR) analysis. And it revealed that the PCPP improved the flame‐retardant property of PLA via altering the release of the flammable gas and nonflammable gas. Moreover, the PCPP improved the flame‐retardant property of PLA by inhibiting exothermic oxidation reactions in the combustion, which was further proved by pyrolysis–gas chromatography–mass spectrometry analysis. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40480.  相似文献   

17.
The phosphoric acid–pentaerythritol–melamine copolymer was selected as an intumescent flame retardant (IFR). The influence of dicromate acid–etching polypropylene (EPP) on the properties and compatibility of IFR/PP composites was studied. The results obtained from mechanical tests and SEM showed that EPP was a true coupling agent for IFR/PP blends, but without changing the necessary flame retardancy. The cocrystallization between bulk PP and PP segments of EPP was proved by WAXD analysis. Flow tests showed that the flow behavior of composites in the melt is that of a pseudoplastic liquid, which is almost insignificant for EPP affecting the rheological behavior of an IFR/PP composite. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 522–527, 2002; DOI 10.1002/app.10261  相似文献   

18.
The ammonium polyphosphate (APP)–pentaerythritol (PT)–melamine (M) system was selected as an intumescent flame retardant (IFR). The influence of dichromic acid–etched polypropylene (EPP) on the properties and compatibility of IFR/polypropylene (PP) composites was studied. The results obtained from mechanical tests and SEM showed that EPP was a true coupling agent for IFR/PP blends, but without changing the necessary flame retardancy. The cocrystallization between bulk PP and PP segments of EPP was confirmed by WAXD analysis. Flow tests showed that the flow behavior of composites in the melt is that of a pseudoplastic liquid, which is significant for EPP's effect on the rheological behavior of IFR/PP composite. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1388–1391, 2004  相似文献   

19.
A novel macromolecular silicon‐containing intumescent flame retardants (Si‐IFR) was synthesized, and its structure was a caged bicyclic macromolecule containing phosphorus‐silicon characterized by IR. Epoxy resins (EP) were modified with Si‐IFR to get the flame retardant EP, whose flammability and burning behavior were characterized by UL 94 and limiting oxygen index (LOI). Twenty percentage of weight of Si‐IFR was doped into EP to get 27.5% of LOI and UL 94 V‐0. The degradation behavior of the flame retardant EP was studied by thermogravimetry, differential thermogravimetry, scanning electron microscopy, and X‐ray photoelectron spectroscopy analysis. The experimental results exhibited that when EP/Si‐IFR was heated, the phosphorus‐containing groups firstly decompose to hydrate the char source‐containing groups to form a continuous and protective carbonaceous char, which changed into heat‐resistant swollen char by gaseous products from the nitrogen‐containing groups. Meanwhile, SiO2 reacts with phosphate to yield silicophosphate, which stabilizes the swollen char. The barrier properties and thermal stability of the swollen char are most effective in resisting the transport of heat and mass to improve the flame retardancy and thermal stability of EP. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
Nickel formate was used as a catalyst to improve the flame‐retardancy of intumescent systems based on ammonium polyphosphate (APP) and pentaerythritol (petol) in polypropylene (PP). Limited oxygen index (LOI), X‐ray diffraction (XRD) and thermogravimetric analysis (TGA) were used to characterize the fire‐retardancy and thermal stability of the PP system and the microstructure of the burned residue. The catalytic effect was shown in an increase in LOI, and a change in the residue microstructure and the thermal stability of the PP system. LOI increased with the concentration of the catalyst in the range 0.1–5 wt% of the composition until a maximum was reached. At higher concentration of the catalyst a decrease in the LOI was observed. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号