首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystalline nanoparticles of barium titanate (BT) are incorporated into polyimide (PI) to fabricate highly refractive, anti‐UV‐degradable nanocomposite films with high permittivity and thermal stability. For homogeneous incorporation of BT nanoparticles into the PI matrix, the BT nanoparticles are surface modified by phthalimide with the aid of a silane coupling agent as a scaffold. The PI nanocomposites are prepared by in situ polymerization in which a diphthalic anhydride and a diamine are used to form the PI matrix in the presence of the surface‐modified nanoparticles. The refractive index of the transparent nanocomposite films reaches 1.85 at a nanoparticle content of 59 vol% with a high dielectric constant of ε = 37 and thermal stability up to 460 °C. Copyright © 2012 Society of Chemical Industry  相似文献   

2.
Poly(butylacrylate‐co‐styrene)/poly(methyl methacrylate) (PMMA) core–shell composite particles having different refractive indexes were prepared by a two‐stage consecutive emulsion polymerization. The refractive index of the core phase was controlled by varying the incorporated amount of divinylbenzene (DVB) which acted as a crosslinking agent as well as a refractive index enhancer. The blends of these core–shell composite particles with PMMA showed an impact strength increment of about three times compared with that of the pure PMMA. However, as the amount DVB increased, the impact strength showed a tendency toward decreasing. This was caused by the loss of the elastic property of the core phase. The toughened PMMA blended with core–shell composite particles having the core crosslinked with 1 wt % DVB showed the best transparency. However, the transparency was rather decreased, as the difference of the refractive index between the core phase and the pure PMMA increased. This suggested that in the case of using the core–shell composite particles as a toughening agent for PMMA the matching of the refractive index of the core phase with that of the pure PMMA was one of key factors in maintaining the transparency of the toughened PMMA. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1607–1614, 1999  相似文献   

3.
The objective of this study was to investigate the fundamental aspects of acrylic resin and zirconia nanoparticle interaction to analyze the optical properties and subsequent changes in refractive index with incremental loading of nanoparticles. Poly(methyl methacrylate) (PMMA) reinforced with zirconia nanoparticles were prepared by dip coating, spin coating and solvent casting techniques. An overall understanding of the polymer nanocomposite film has been achieved using the spectroscopic and morphological studies. The vital aspect of this whole study is to derive a simple yet an efficient nanocomposite film capable of imparting extraordinary optical properties. Within the limitations of this research a very crucial property of the material has been revealed. The RI as well as the optical transparency of the nanocomposite film has been steadily maintained with a significant increase of RI by the magnitude of 0.06 and ~100% light transmittance on incorporation of pure zirconia nanoparticles into PMMA matrix has been achieved. The best technique found was spin coating as it could yield thin films and better transparency and higher refractive index.  相似文献   

4.
Hydroxy‐substituted aromatic nitrone derivatives were used for the photochemical control of the refractive index of poly(methyl methacrylate) (PMMA) films. Upon irradiation with 366‐nm light in solution, these derivatives underwent rearrangement reactions, which eventually produced N,N‐diarylformamide derivatives in quantitative yields. Similar photoreactions of the aromatic nitrones in the PMMA films lowered the refractive index of the films by as much as 0.014. The magnitude of the observed refractive‐index change was enough for hydroxy‐substituted nitrones to be used as additives for the fabrication of graded‐index‐type polymer optical fibers. In addition, the refractive index of the PMMA films remained almost constant at any conversion of the starting nitrone derivatives for at least 70 days at room temperature. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2517–2520, 2004  相似文献   

5.
By using sol–gel method, amorphous titania was introduced into epoxy matrix to prepare a series of high refractive index TiO2/epoxy resin nanocomposite films. To increase the refractive index of the hybrid films, triethoxysilane‐capped trimercaptothioethylamine (TCTMTEA), a new kind of high refractive index coupling agent was synthesized from trimercaptothioethylamine (TMTEA). In the experiment, TCTMTEA acted as the solidification agent together with TMTEA except being used as the coupling agent. The hybrid films have been characterized via FTIR, AFM, DSC, TGA, etc. The experimental results showed that the amorphous TiO2 had been dispersed uniformly in the organic polymer matrix with the size smaller than 100 nm in each sample. More importantly, the refractive index of this kind of materials can be continuously adjusted from 1.61 to 1.797 with the content of TiO2 increasing from 0% to 65% in mass, and the continuously adjusted refractive index is very important for the applications in optical antirefractive films. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1631–1636, 2006  相似文献   

6.
Poly(methyl methacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were prepared by a new one‐pot technique, where the hydrophilic Na‐MMT layers were decorated with hydrophobic 1‐dodecyl‐3‐methylimidazolium hexafluorophosphate (C12mimPF6) ionic liquid in situ during melt blending with PMMA and intercalation of polymer chains took place subsequently. The in situ modification and intercalation of Na‐MMT were confirmed using X‐ray diffraction and transmission electron microscopy. The combination of the compatible C12mimPF6 with PMMA and the good dispersion of MMT layers at the nanoscale rendered the resultant PMMA/MMT nanocomposites with improved optical transparency, thermal stability and mechanical properties. Copyright © 2012 Society of Chemical Industry  相似文献   

7.
Polyhedral oligomeric silsesquioxane (POSS) is a promising nanofiller for tuning properties of optically transparent polymer materials. On the other hand, traditional completely condensed POSS (CC‐POSS) has a fundamental problem for fabricating optically transparent composite films; CC‐POSS has high crystallinity due to its symmetrical structure, resulting in aggregation in the polymer matrices. In this work, we have demonstrated that incompletely‐condensed POSS (IC‐POSS), which has an open‐cage structure, can be well dispersed in a poly(methyl methacrylate) (PMMA) matrix. IC‐POSS with various substituents were readily synthesized, and their composite films of PMMA were fabricated by solution‐casting method. High transparency was achieved with up to 30 wt % of the IC‐POSS fillers, while the CC‐POSS analogues caused phase separation with 10 wt % loading. Addition of the IC‐POSS fillers can improve thermal stability and control glass transition temperature by the substituent structure. Additionally, refractive index was tuned from 1.485 to 1.513. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46033.  相似文献   

8.
Copolymers of methyl methacrylate (MMA) and pentafluorophenyl methacrylate (PFPMA) of various compositions were prepared with a free‐radical initiator. When PFPMA was included in the copolymers, the glass‐transition temperatures increased and showed a positive deviation from the Gordon–Taylor equation. A copolymer containing 20 wt % PFPMA exhibited almost zero orientational birefringence, and the photoelastic birefringence became zero when the copolymer contained 13 wt % PFPMA. When 20 wt % PFPMA was incorporated into the MMA copolymer, its water absorption decreased to 0.4 wt % versus 1.8 wt % for poly(methyl methacrylate) (PMMA) under the same condition. The flammability of the PFPMA/MMA copolymer was reduced in comparison with that of the MMA homopolymer. The refractive indices of the PFPMA/MMA copolymers were very close to that of PMMA, and the transmittances of the copolymers were slightly better than that of PMMA. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

9.
The inorganic–organic crosslinking polythiourethane/ZnS (PTU/ZnS) nanocomposites with high refractive index and transmittance were successfully prepared. The thiol‐capped ZnS nanoparticles with a diameter of about 5 nm were fabricated into the molecular chains of PTU via the formed covalent bonds between the capped ZnS and the matrix. The investigations demonstrated the ZnS nanoparticles were uniformly dispersed in the PTU matrix even at high contents. The optical studies showed the refractive index of the highly transparent nanocomposite films linearly increased from 1.643 to 1.792 with the increase of the ZnS content. The structure, morphology, and other properties were also characterized by FTIR, NMR, AFM, XRD, DSC, TGA, etc. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
A systematic study of the reinforcement of single‐walled carbon nanotubes (SWNTs), multiwalled carbon nanotubes, and vapor‐grown carbon nanofibers (VGCNFs) in poly(methyl methacrylate) (PMMA) is reported. SWNT/PMMA composite films with various SWNT concentrations (from 0.5 to 50 wt % with respect to the weight of PMMA) were processed from nitromethane. Two types of SWNTs were used: SWNT‐A, which contained 35 wt % metal catalyst, and SWNT‐B, which contained about 2.4 wt % metal catalyst. Properties of different nanotubes containing composites were compared with 15 wt % carbon nanotubes (CNTs). Property enhancement included electrical conductivity, mechanical properties, and solvent resistance. The thermal degradation of PMMA in the presence of CNTs in air and nitrogen environments was studied. No variation in the thermal degradation behavior of PMMA/CNT was observed in nitrogen. The peak degradation temperature increased for the composites in air at low CNT loadings. Dynamic and thermomechanical properties were also studied. At a 35 wt % SWNT loading, a composite film exhibited good mechanical and electrical properties, good chemical resistance, and a very low coefficient of thermal expansion. Property improvements were rationalized in terms of the nanotube surface area. Composite films were also characterized with Raman spectroscopy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
In this article, carbazole‐grafted methacrylic polysiloxane (MA‐CZ‐PDMS) macromonomer was synthesized and its structure was confirmed by proton nuclear magnetic resonance (1H NMR). The polysiloxane macromonomer can homogeneously copolymerize with methyl methacrylate (MMA) to prepare transparent and foldable carbazole‐grafted polysiloxane‐poly(methyl methacrylate) (PDMS‐PMMA) membranes with a high refractive index (RI). The membranes were characterized by light transmittance, RI value, and dynamic mechanical thermal analysis (DMTA). The results indicated that the carbazole‐grafted PDMS‐PMMA membranes had excellent light transmittance that decreased slightly with increasing carbazole‐grafted polysiloxane content. Incorporation of carbazole‐grafted polysiloxane in the materials improved its RI value; however decreased the glass transmission temperature (Tg) that can be adjusted to less than 30°C, enable the membrane foldable at room temperature. The data demonstrate that the carbazole‐grafted PDMS‐PMMA membranes have a potential application as high RI intraocular lens (IOL) suitable for implantation by minimally invasive surgery. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42491.  相似文献   

12.
Poly(butyl acrylate)/poly(methyl methacrylate) (PBA/PMMA) core–shell particles embedded with nanometer‐sized silica particles were prepared by emulsion polymerization of butyl acrylate (BA) in the presence of silica particles preabsorbed with 2,2′‐azobis(2‐amidinopropane)dihydrochloride (AIBA) initiator and subsequent MMA emulsion polymerization in the presence of PBA/silica composite particles. The morphologies of the resulting PBA/silica and PBA/silica/PMMA composite particles were characterized, which showed that AIBA could be absorbed effectively onto silica particles when the pH of the dispersion medium was greater than the isoelectric potential point of silica. The critical amount of AIBA added to have stable dispersion of silica particles increased as the pH of the dispersion medium increased. PBA/silica composite particles prepared by in situ emulsion polymerization using silica preabsorbed with AIBA showed higher silica absorption efficiency than did the PBA/silica composite particles prepared by direct mixing of PBA latex and silica dispersion or by emulsion polymerization in which AIBA was added after the mixing of BA and silica. The PBA/silica composite particles exhibited a raspberrylike morphology, with silica particles “adhered” to the surfaces of the PBA particles, whereas the PBA/silica/PMMA composite latex particles exhibited a sandwich morphology, with silica particles mainly at the interface between the PBA core and the PMMA shell. Subsequently, the PBA/silica/PMMA composite latex obtained had a narrow particle size distribution and good dispersion stability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3425–3432, 2006  相似文献   

13.
In this study, transparent poly(methylmethacrylate) (PMMA)‐silicone hybrid materials, P(MMA‐co‐SigUMAx), were prepared with methylmethacrylate (MMA) and multifunctional silicone macromonomer introduced methacryl groups. The transmittance of hybrid materials improved with increase of methacryl groups of silicone macromonomer and reached around 90% T. Atomic force microscopic analysis, scanning electron microscope examinations, and copolymerization kinetics estimation by proton nuclear magnetic resonance revealed that the silicone macromonomer randomly incorporated in the copolymer with MMA by the increase of methacryl groups and suppresses the aggregation of the silicone segment. The hybrid materials introduced over 10 wt % of silicone component had water‐shedding surface and the water contact angle was elevated from 65 to 95°. Though the mechanical properties of hybrid materials were lowered by introduction of flexible silicone component, thermal property such as 5 wt % weight loss temperature were improved. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Polystyrene/polystyrene-block-poly(methyl methacrylate)/poly(methyl methacrylate) (PS/PS-b-PMMA/PMMA) composite particles were prepared by releasing toluene from PS/PS-b-PMMA/PMMA/toluene droplets dispersed in a sodium dodecyl sulfate aqueous solution. The morphology of the composite particles was affected by release rate of toluene, the molecular weight of PS-b-PMMA, droplet size, and polymer composition. ‘Onion-like’ multilayered composite particles were prepared from toluene droplets of PS-b-PMMA and of PS/PS-b-PMMA/PMMA, in which the weights of PS and PMMA were the same. The layer thicknesses of the latter multilayered composite particles increased with an increase in the amount of the homopolymers. PS-b-PMMA/PS composite particles had a sea-islands structure, in which PMMA domains were dispersed in a PS matrix. On the other hand, PS-b-PMMA/PMMA composite particles had a cylinder-like structure consisting of a PMMA matrix and PS domains.  相似文献   

15.
A series of optically transparent ZnS‐poly(vinylpyrrolidone) (PVP) nanocomposite films with high refractive indices and high Abbe numbers have been prepared. Mercaptoethanol (ME) capped ZnS nanoparticles (NPs) were introduced into the PVP polymer matrix via simple blending with high nanophase contents. ME‐ZnS NPs of around 3 nm were prepared from zinc acetate and thiourea precursors in N,N‐dimethylformamide using ME as a capping agent. Transparent nanocomposite films with high refractive indices and high Abbe numbers can be easily prepared by a conventional film casting method. TGA results indicated that the ZnS/PVP nanocomposite films exhibit good thermal stability and the measured contents of ZnS NPs in the films agree well with the theoretical values. The refractive indices and the Abbe numbers of the ZnS/PVP nanocomposite films range from 1.5061 to 1.7523 and 55.6 to 20.4 with the content of ME‐ZnS NPs varied between 0 and 80 wt %, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Trisilanolphenyl–polyhedral oligosilsesquioxane (trisilanolphenyl–POSS) structure is introduced into a polysiloxane network in an attempt to produce thermally stable material with improved transparency. A series of organic–inorganic resins comprised of diphenylsilanediol, 3‐methacryloxypropyl trimethoxysilane, and varying content of trisilanolphenyl–POSS were copolymerized through condensation followed by curing using phenyltris(hydrogendimethylsiloxy)silane as curing agent. Fourier transform infrared spectroscopy (FTIR), proton‐nuclear magnetic resonance spectroscopy (1H‐NMR), and silicon‐nuclear magnetic resonance spectroscopy (29Si‐NMR) were used to confirm the synthesized product. Excellent thermal stability, improved glass transition temperature (Tg), and lower coefficient of thermal expansion with the increasing POSS content were observed from thermomechanical analysis. Its extreme thermal degradation stability was attributable to the crosslinked network as well as the heavily substituted aromatic ring present in the system. Steric hindrance effect is noticeable beyond 5.66 mol % trisilanolphenyl–POSS content. Incorporation of POSS substituent in methacrylate‐based polysiloxane give excellent transparency and improved thermal discoloration resistance as deduced from UV/vis Spectrophotometer, making it a potential material to be used in optoelectronics. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45285.  相似文献   

17.
Herein, nano boron nitride (BN) laminated poly(ethyl methacrylate) (PEMA)/poly(vinyl alcohol) (PVA) nanocomposite films are fabricated by using a simple in situ polymerization technique with incorporation of silver nanoparticles (Ag NPs). Structural investigations of PEMA/PVA/Ag@BN nanocomposite thin films are carried out by Fourier-transform infrared spectroscopy, dynamic light scattering, X-ray diffraction analysis, 1H nuclear magnetic resonance, 13C nuclear magnetic resonance, and mass spectrometry. The change in morphology of PEMA/PVA matrix due to the reinforcement of BN platelets are identified by electron microscopic studies. The unique tortuous paths are achieved by the dispersion of BN platelets by which gas penetration is restricted with enhancing the barrier properties of the material by 6.5 folds at 5 wt% BN content as compared with neat PEMA/PVA. Acid and alkali resistant along with biodegradability behavior of as-synthesized nanocomposites are studied. From limiting oxygen index (LOI) results, it is found that the prepared materials are fire retardant in nature owing to effective reinforcement of BN layers. Antibacterial activities of PEMA/PVA/Ag@BN nanocomposite are studied by Xanthomonas citri or axonopodis pv. Citri, Escherichia coli, and Xanthomonas oryzae pv. Oryzae because of Ag NPs reinforcement. The substantial improvements in gas barrier, fire retardant, and antibacterial properties enable the materials for packaging application.  相似文献   

18.
PMMA/MMT nanocomposites were successfully synthesized via in situ intercalative polymerization, and characterized by means of wide‐angle X‐ray diffractometry, transmission electron microscopy, thermal gravimetric analysis, dynamic mechanical analysis and Fourier‐transform infrared analysis. The nanocomposites possess partially exfoliated and partially intercalated structure, in which the silicate layers are exfoliated into nanometre secondary particles with thickness of less than 20 nm and uniformly dispersed in the polymer matrix. In comparison with pure PMMA, the thermal stability, glass transition temperature, and mechanical properties of the polymer are notably improved by the presence of the nanometric silicate layers. It was found that part of the PMMA chains in the nanocomposites are well immobilized inside and/or onto the layered silicates and, therefore, the unique properties of the nanocomposites result from the strong interactions between the nanometric silicate layers and the polymer chains. Copyright © 2003 Society of Chemical Industry  相似文献   

19.
Transparent, interpenetrating polymer network (IPN) materials were synthesized using polyurethane (PU) and poly(methyl methacrylate) (PMMA). PMMA contributed to the transparency and rigidity necessary for use in impact‐resistant applications, whereas PU contributed to toughness. Several factors affecting the physical properties, such as the ratio of PU to PMMA, curing profile, inclusion of different isocyanates for the PU phase, and use of an inhibitor in the PMMA phase, were investigated. Full‐IPNs were synthesized so that the two polymer networks would remain entangled with one another, and domain sizes of each system were reduced, mitigating phase separation. Both simultaneous IPNs, polymerization of monomers occurring at the same time, and sequential IPNs, polymerization of monomers occurring at different temperatures, were synthesized for studying the reaction kinetics and final morphologies. The phase morphology and the final thermal and mechanical properties of the IPNs prepared were evaluated. Findings suggest that samples containing ~80 wt% PMMA, 1,6‐diisocyanatohexane 99+% (DCH), and an inhibitor with the MMA monomer created favorable results in the thermo‐mechanical and optical properties. POLYM. ENG. SCI. 2013. © 2012 Society of Plastics Engineers  相似文献   

20.
Films of poly(methyl methacrylate) (PMMA)/sodium montmorillonite (Na+‐MMT) nanocomposites have been successfully prepared utilizing Na+‐MMT by N,N‐dimethylformamide solution casting. The nanocomposite films show high transparency, enhanced thermal resistance, and mechanical properties in comparison with the neat polymer film. The transparency of the films was investigated by UV‐vis spectra. The exfoliated dispersion of Na+‐MMT platelets in nanocomposites were investigated by X‐ray diffraction and transmission electron microscopy. The enhanced thermal resistance and mechanical properties of PMMA were studied by thermal gravimetric analysis and dynamic mechanical analysis, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号