首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Galerkin/least‐squares (GLS) finite element formulation for problem of consolidation of fully saturated two‐phase media is presented. The elimination of spurious pressure oscillations appearing at the early stage of consolidation for standard Galerkin finite elements with equal interpolation order for both displacements and pressures is the goal of the approach. It will be shown that the least‐squares term, based exclusively on the residuum of the fluid flow continuity equation, added to the standard Galerkin formulation enhances its stability and can fully eliminate pressure oscillations. A reasonably simple framework designed for derivation of one‐dimensional as well as multi‐dimensional estimates of the stabilization factor is proposed and then verified. The formulation is validated on one‐dimensional and then on two‐dimensional, linear and non‐linear test problems. The effect of the fluid incompressibility as well as compressibility will be taken into account and investigated. Copyright © 2001 John Wiley & Sons Ltd.  相似文献   

2.
Finite element formulations for second‐order elliptic problems, including the classic H1‐conforming Galerkin method, dual mixed methods, a discontinuous Galerkin method, and two primal hybrid methods, are implemented and numerically compared on accuracy and computational performance. Excepting the discontinuous Galerkin formulation, all the other formulations allow static condensation at the element level, aiming at reducing the size of the global system of equations. For a three‐dimensional test problem with smooth solution, the simulations are performed with h‐refinement, for hexahedral and tetrahedral meshes, and uniform polynomial degree distribution up to four. For a singular two‐dimensional problem, the results are for approximation spaces based on given sets of hp‐refined quadrilateral and triangular meshes adapted to an internal layer. The different formulations are compared in terms of L2‐convergence rates of the approximation errors for the solution and its gradient, number of degrees of freedom, both with and without static condensation. Some insights into the required computational effort for each simulation are also given.  相似文献   

3.
The Newmark method for the numerical integration of second order equations has been extensively used and studied along the past fifty years for structural dynamics and various fields of mechanical engineering. Easy implementation and nice properties of this method and its derivatives for linear problems are appreciated but the main drawback is the treatment of discontinuities. Zienkiewicz proposed an approach using finite element concept in time, which allows a new look at the Newmark method. The idea of this paper is to propose, thanks to this approach, the use of a time partition of the unity method denoted Time Extended Finite Element Method (TX‐FEM) for improved numerical simulations of time discontinuities. An enriched basis of shape functions in time is used to capture with a good accuracy the non‐polynomial part of the solution. This formulation allows a suitable form of the time‐stepping formulae to study stability and energy conservation. The case of an enrichment with the Heaviside function is developed and can be seen as an alternative approach to time discontinuous Galerkin method (T‐DGM), stability and accuracy properties of which can be derived from those of the TX‐FEM. Then Space and Time X‐FEM (STX‐FEM) are combined to obtain a unified space–time discretization. This combined STX‐FEM appears to be a suitable technique for space–time discontinuous problems like dynamic crack propagation or other applications involving moving discontinuities. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a discontinuous Galerkin finite element computational methodology for solving the coupled phase‐field and heat diffusion equations to predict the microstructure evolution during solidification. The phase‐field modelling of microstructure formation is briefly discussed. The discontinuous Galerkin finite element formulation for the phase‐field model systems for solidification microstructure formation is described in detail. Numerical stability is performed using the Neumann method. The accuracy of the discontinuous model is verified by the analytic solution of a simple 1‐D solidification problem. Numerical calculations using the discontinuous finite element phase‐field model have been performed for simulating the complex 2‐D and 3‐D dendrite structures formed in supercooled melts and the results are compared well with those in literature using the finite difference methods. Parallel computing algorithm is presented and results show that the minimization of the intercommunication between microprocessors is the key to increase the effectiveness in parallel computing with the discontinuous finite element phase‐field model for solidification microstructure formation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
In finite element formulations for poroelastic continua a representation of Biot's theory using the unknowns solid displacement and pore pressure is preferred. Such a formulation is possible either for quasi‐static problems or for dynamic problems if the inertia effects of the fluid are neglected. Contrary to these formulations a boundary element method (BEM) for the general case of Biot's theory in time domain has been published (Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach. Lecture Notes in Applied Mechanics. Springer: Berlin, Heidelberg, New York, 2001.). If the advantages of both methods are required it is common practice to couple both methods. However, for such a coupled FE/BE procedure a BEM for the simplified dynamic Biot theory as used in FEM must be developed. Therefore, here, the fundamental solutions as well as a BE time stepping procedure is presented for the simplified dynamic theory where the inertia effects of the fluid are neglected. Further, a semi‐analytical one‐dimensional solution is presented to check the proposed BE formulation. Finally, wave propagation problems are studied using either the complete Biot theory as well as the simplified theory. These examples show that no significant differences occur for the selected material. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Several finite element techniques used in domains with curved boundaries are discussed and compared, with particular emphasis in two issues: the exact boundary representation of the domain and the consistency of the approximation. The influence of the number of integration points on the accuracy of the computation is also studied. Two‐dimensional numerical examples, solved with continuous and discontinuous Galerkin formulations, are used to test and compare all these methodologies. In every example shown, the recently proposed NURBS‐enhanced finite element method (NEFEM) provides the maximum accuracy for a given spatial discretization, at least one order of magnitude more accurate than classical isoparametric finite element method (FEM). Moreover, NEFEM outperforms Cartesian FEM and p‐FEM, stressing the importance of the geometrical model as well as the relevance of a consistent approximation in finite element simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
This paper studies the static fracture problems of an interface crack in linear piezoelectric bimaterial by means of the extended finite element method (X‐FEM) with new crack‐tip enrichment functions. In the X‐FEM, crack modeling is facilitated by adding a discontinuous function and crack‐tip asymptotic functions to the classical finite element approximation within the framework of the partition of unity. In this work, the coupled effects of an elastic field and an electric field in piezoelectricity are considered. Corresponding to the two classes of singularities of the aforementioned interface crack problem, namely, ? class and κ class, two classes of crack‐tip enrichment functions are newly derived, and the former that exhibits oscillating feature at the crack tip is numerically investigated. Computation of the fracture parameter, i.e., the J‐integral, using the domain form of the contour integral, is presented. Excellent accuracy of the proposed formulation is demonstrated on benchmark interface crack problems through comparisons with analytical solutions and numerical results obtained by the classical FEM. Moreover, it is shown that the geometrical enrichment combining the mesh with local refinement is substantially better in terms of accuracy and efficiency. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Shear locking is a major issue emerging in the computational formulation of beam and plate finite elements of minimal number of degrees of freedom as it leads to artificial overstiffening. In this paper, discontinuous Timoshenko beam and Mindlin‐Reissner plate elements are developed by adopting the Hellinger‐Reissner functional with the displacements and through‐thickness shear strains as degrees of freedom. Heterogeneous beams and plates with weak discontinuity are considered, and the mixed formulation has been combined with the extended finite element method (FEM); thus, mixed enrichment functions are used. Both the displacement and the shear strain fields are enriched as opposed to the traditional extended FEM where only the displacement functions are enriched. The enrichment type is restricted to extrinsic mesh‐based topological local enrichment. The results from the proposed formulation correlate well with analytical solution in the case of the beam and in the case of the Mindlin‐Reissner plate with those of a finite element package (ABAQUS) and classical FEM and show higher rates of convergence. In all cases, the proposed method captures strain discontinuity accurately. Thus, the proposed method provides an accurate and a computationally more efficient way for the formulation of beam and plate finite elements of minimal number of degrees of freedom.  相似文献   

9.
Spatially-discontinuous Galerkin methods constitute a generalization of weak formulations, which allow for discontinuities of the problem unknowns in its domain interior. This is particularly appealing for problems involving high-order derivatives, since discontinuous Galerkin (DG) methods can also be seen as a means of enforcing higher-order continuity requirements. Recently, DG formulations of linear and non-linear Kirchhoff-Love shell theories have been proposed. This new one-field formulations take advantage of the weak enforcement in such a way that the displacements are the only discrete unknowns, while the C1 continuity is enforced weakly. The Resulting one field formulation is a simple and efficient method to model thin structures and can be applied to various computational methods.  相似文献   

10.
Discontinuous Galerkin (DG) methods provide a means of weakly enforcing the continuity of the unknown‐field derivatives and have particular appeal in problems involving high‐order derivatives. This feature has previously been successfully exploited (Comput. Methods Appl. Mech. Eng. 2008; 197 :2901–2929) to develop a formulation of linear Kirchhoff–Love shells considering only the membrane and bending responses. In this proposed one‐field method—the displacements are the only unknowns, while the displacement field is continuous, the continuity in the displacement derivative between two elements is weakly enforced by recourse to a DG formulation. It is the purpose of the present paper to extend this formulation to finite deformations and non‐linear elastic behaviors. While the initial linear formulation was relying on the direct linear computation of the effective membrane stress and effective bending couple‐stress from the displacement field at the mid‐surface of the shell, the non‐linear formulation considered implies the evaluation of the general stress tensor across the shell thickness, leading to a reformulation of the internal forces of the shell. Nevertheless, since the interface terms resulting from the discontinuous Galerkin method involve only the resultant couple‐stress at the edges of the shells, the extension to non‐linear deformations is straightforward. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The wavelet‐based methods are powerful to analyse the field problems with changes in gradients and singularities due to the excellent multi‐resolution properties of wavelet functions. Wavelet‐based finite elements are often constructed in the wavelet space where field displacements are expressed as a product of wavelet functions and wavelet coefficients. When a complex structural problem is analysed, the interface between different elements and boundary conditions cannot be easily treated as in the case of conventional finite‐element methods (FEMs). A new wavelet‐based FEM in structural mechanics is proposed in the paper by using the spline wavelets, in which the formulation is developed in a similar way of conventional displacement‐based FEM. The spline wavelet functions are used as the element displacement interpolation functions and the shape functions are expressed by wavelets. The detailed formulations of typical spline wavelet elements such as plane beam element, in‐plane triangular element, in‐plane rectangular element, tetrahedral solid element, and hexahedral solid element are derived. The numerical examples have illustrated that the proposed spline wavelet finite‐element formulation achieves a high numerical accuracy and fast convergence rate. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Interface capturing methods using enriched finite element formulations are well suited for solving multimaterial transport problems that contain weak or strong discontinuities. The conformal decomposition FEM decomposes multimaterial elements of a non‐conforming background mesh into sub‐elements that conform to material interfaces captured using a level set method. As the interface evolves, interfacial nodes move, and background nodes may change material. The present work describes approaches for handling moving interfaces in the context of the conformal decomposition FEM for both weakly and strongly discontinuous fields. Dynamic discretization methods using extrapolation and moving mesh approaches are considered and developed with first‐order and second‐order time integration methods. The moving mesh approach is demonstrated to be a stable method that preserves both weak and strong discontinuities on a variety of one‐dimensional and two‐dimensional test problems, while achieving the expected second‐order error convergence rate in space and time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents the formulation and a partial analysis of a class of discontinuous Galerkin methods for quasistatic non‐linear elasticity problems. These methods are endowed with several salient features. The equations that define the numerical scheme are the Euler–Lagrange equations of a one‐field variational principle, a trait that provides an elegant and simple derivation of the method. In consonance with general discontinuous Galerkin formulations, it is possible within this framework to choose different numerical fluxes. Numerical evidence suggests the absence of locking at near‐incompressible conditions in the finite deformations regime when piecewise linear elements are adopted. Finally, a conceivable surprising characteristic is that, as demonstrated with numerical examples, these methods provide a given accuracy level for a comparable, and often lower, computational cost than conforming formulations. Stabilization is occasionally needed for discontinuous Galerkin methods in linear elliptic problems. In this paper we propose a sufficient condition for the stability of each linearized non‐linear elastic problem that naturally includes material and geometric parameters; the latter needed to account for buckling. We then prove that when a similar condition is satisfied by the discrete problem, the method provides stable linearized deformed configurations upon the addition of a standard stabilization term. We conclude by discussing the complexity of the implementation, and propose a computationally efficient approach that avoids looping over both elements and element faces. Several numerical examples are then presented in two and three dimensions that illustrate the performance of a selected discontinuous Galerkin method within the class. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
The discontinuous Galerkin FEM is used for the numerical solution of the three‐dimensional Maxwell equations. Control of errors in the numerical level for the divergence‐free constraint of the magnetic field can be obtained through the use of divergence‐free vector bases. In this work, the so‐called perfectly hyperbolic formulation of the Maxwell equations is used to retain both divergence‐free magnetic field and in the presence of charges to satisfy the Gauss constraint for the electric field at the numerical level. For both approaches, it is found that higher‐order approximations have favorable effect on the preservation of the divergence constraints and that the perfectly hyperbolic formulations retains these errors to a lower level. It is shown that high‐order accuracy in space and time is achieved in unstructured meshes using implicit time marching. For nonuniform meshes, local resolution refinement is used using p‐type adaptivity to ensure accurate electromagnetic wave propagation. Thus, the potential of the method to reach the required higher resolution in anisotropic meshes and obtain accurate electromagnetic wave propagation with reduced computational effort is demonstrated.  相似文献   

15.
In this paper we present a mixed stabilized finite element formulation that does not lock and also does not exhibit unphysical oscillations near the incompressible limit. The new mixed formulation is based on a multiscale variational principle and is presented in two different forms. In the first form the displacement field is decomposed into two scales, coarse-scale and fine-scale, and the fine-scale variables are eliminated at the element level by the static condensation technique. The second form is obtained by simplifying the first form, and eliminating the fine-scale variables analytically yet retaining their effect that results with additional (stabilization) terms. We also derive, in a consistent manner, an expression for the stabilization parameter. This derivation also proves the equivalence between the classical mixed formulation with bubbles and the Galerkin least-squares type formulations for the equations of linear elasticity. We also compare the performance of this new mixed stabilized formulation with other popular finite element formulations by performing numerical simulations on three well known test problems.  相似文献   

16.
Modeling of discontinuities (shock waves, crack surfaces, etc.) in solid mechanics is one of the major research areas in modeling the mechanical behavior of materials. Among the numerical methods, the discontinuous Galerkin method (DGM) poses some advantages in solving these problems. In this study, a novel formulation for DGM is derived for elastostatics based on the peridynamic theory. Derivation of the proposed formulation is presented. Numerical analyses are performed for different problems, and the numerical results are compared to that of the known exact solutions of the problems. The proposed weak formulation is stable and coercive. Peridynamic discontinuous Galerkin formulation is found to be robust and successful in modeling elastostatic problems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
An efficient meshless method for fracture analysis of cracks   总被引:4,自引:0,他引:4  
This paper presents an efficient meshless method for analyzing linear-elastic cracked structures subject to single- or mixed-mode loading conditions. The method involves an element-free Galerkin formulation in conjunction with an exact implementation of essential boundary conditions and a new weight function. The proposed method eliminates the shortcomings of Lagrange multipliers typically used in element-free Galerkin formulations. Numerical examples show that the proposed method yields accurate estimates of stress-intensity factors and near-tip stress field in two-dimensional cracked structures. Since the method is meshless and no element connectivity data are needed, the burdensome remeshing required by finite element method (FEM) is avoided. By sidestepping remeshing requirement, crack-propagation analysis can be dramatically simplified. Example problems on mixed-mode condition are presented to simulate crack propagation. The predicted crack trajectories by the proposed meshless method are in excellent agreement with the FEM or the experimental data. Received 6 March 2000  相似文献   

18.
A new discontinuous Galerkin method for elliptic problems which is capable of rendering the same set of unknowns in the final system of equations as for the continuous displacement‐based Galerkin method is presented. Those equations are obtained by the assembly of element matrices whose structure in particular cases is also identical to that of the continuous displacement approach. This makes the present formulation easily implementable within the existing commercial computer codes. The proposed approach is named the embedded discontinuous Galerkin method. It is applicable to any system of linear partial differential equations but it is presented here in the context of linear elasticity. An application of the method to linear shell problems is then outlined and numerical results are presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
The first superconvergent hybridisable discontinuous Galerkin method for linear elastic problems capable of using the same degree of approximation for both the primal and mixed variables is presented. The key feature of the method is the strong imposition of the symmetry of the stress tensor by means of the well known and extensively used Voigt notation, circumventing the use of complex mathematical concepts to enforce the symmetry of the stress tensor either weakly or strongly. A novel procedure to construct element by element a superconvergent postprocessed displacement is proposed. Contrary to other hybridisable discontinuous Galerkin formulations, the methodology proposed here is able to produce a superconvergent displacement field for low‐order approximations. The resulting method is robust and locking‐free in the nearly incompressible limit. An extensive set of numerical examples is utilised to provide evidence of the optimality of the method and its superconvergent properties in two and three dimensions and for different element types.  相似文献   

20.
Many practical applications require the analysis of elastic wave propagation in a homogeneous isotropic media in an unbounded domain. One widely used approach for truncating the infinite domain is the so‐called method of perfectly matched layers (PMLs). Most existing PML formulations are developed for finite difference methods based on the first‐order velocity‐stress form of the elasticity equations, and they are not straight‐forward to implement using standard finite element methods (FEMs) on unstructured meshes. Some of the problems with these formulations include the application of boundary conditions in half‐space problems and in the treatment of edges and/or corners for time‐domain problems. Several PML formulations, which do work with FEMs have been proposed, although most of them still have some of these problems and/or they require a large number of auxiliary nodal history/memory variables. In this work, we develop a new PML formulation for time‐domain elastodynamics on a spherical domain, which reduces to a two‐dimensional formulation under the assumption of axisymmetry. Our formulation is well‐suited for implementation using FEMs, where it requires lower memory than existing formulations, and it allows for natural application of boundary conditions. We solve example problems on two‐dimensional and three‐dimensional domains using a high‐order discontinuous Galerkin (DG) discretization on unstructured meshes and explicit time‐stepping. We also study an approach for stabilization of the discrete equations, and we show several practical applications for quality factor predictions of micromechanical resonators along with verifying the accuracy and versatility of our formulation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号