首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a hybrid formulation combining stochastic reduced basis methods with polynomial chaos expansions for solving linear random algebraic equations arising from discretization of stochastic partial differential equations. Our objective is to generalize stochastic reduced basis projection schemes to non-Gaussian uncertainty models and simplify the implementation of higher-order approximations. We employ basis vectors spanning the preconditioned stochastic Krylov subspace to represent the solution process. In the present formulation, the polynomial chaos decomposition technique is used to represent the stochastic basis vectors in terms of multidimensional Hermite polynomials. The Galerkin projection scheme is then employed to compute the undetermined coefficients in the reduced basis approximation. We present numerical studies on a linear structural problem where the Youngs modulus is represented using Gaussian as well as lognormal models to illustrate the performance of the hybrid stochastic reduced basis projection scheme. Comparison studies with the spectral stochastic finite element method suggest that the proposed hybrid formulation gives results of comparable accuracy at a lower computational cost.  相似文献   

2.
刘欣 《振动工程学报》2006,19(3):370-375
应用径向基点插配点方法对随机动力学中的FPK方程进行了求解.所求未知函数的空间插值采用径向基点插近似,而时间导数离散采用差分格式,建立具有带宽特性的代数方程,采用逐次超松弛迭代法(SOR)有效地求解所得到的代数方程.针对线性振子和杜芬振子问题的FPK方程进行了具体的数值求解,计算结果表明了方法的有效性,尤其是散点模型的计算结果表明该方法具有比其它有网格数值方法对非规则离散模型适应性更强的优点.  相似文献   

3.
We present a novel theoretical framework for the domain decomposition of uncertain systems defined by stochastic partial differential equations. The methodology involves a domain decomposition method in the geometric space and a functional decomposition in the probabilistic space. The probabilistic decomposition is based on a version of stochastic finite elements based on orthogonal decompositions and projections of stochastic processes. The spatial decomposition is achieved through a Schur‐complement‐based domain decomposition. The methodology aims to exploit the full potential of high‐performance computing platforms by reducing discretization errors with high‐resolution numerical model in conjunction to giving due regards to uncertainty in the system. The mathematical formulation is numerically validated with an example of waves in random media. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
5.
A stochastic meshless method is presented for solving boundary‐value problems in linear elasticity that involves random material properties. The material property was modelled as a homogeneous random field. A meshless formulation was developed to predict stochastic structural response. Unlike the finite element method, the meshless method requires no structured mesh, since only a scattered set of nodal points is required in the domain of interest. There is no need for fixed connectivities between nodes. In conjunction with the meshless equations, classical perturbation expansions were derived to predict second‐moment characteristics of response. Numerical examples based on one‐ and two‐dimensional problems are presented to examine the accuracy and convergence of the stochastic meshless method. A good agreement is obtained between the results of the proposed method and Monte Carlo simulation. Since mesh generation of complex structures can be a far more time‐consuming and costly effort than the solution of a discrete set of equations, the meshless method provides an attractive alternative to finite element method for solving stochastic mechanics problems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
This paper explores a method to reduce the computational cost of stochastic finite element codes. The method, known as Gaussian process emulation, consists of building a statistical approximation to the output of such codes based on few training runs. The incorporation of emulation is explored for two aspects of the stochastic finite element problem. First, it is applied to approximating realizations of random fields discretized via the Karhunen–Loève expansion. Numerical results of emulating realizations of Gaussian and lognormal homogeneous two‐dimensional random fields are presented. Second, it is coupled with the polynomial chaos expansion and the partitioned Cholesky decomposition in order to compute the response of the typical sparse linear system that arises due to the discretization of the partial differential equations that govern the response of a stochastic finite element problem. The advantages and challenges of adopting the proposed coupling are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
We present a model reduction approach to the solution of large‐scale statistical inverse problems in a Bayesian inference setting. A key to the model reduction is an efficient representation of the non‐linear terms in the reduced model. To achieve this, we present a formulation that employs masked projection of the discrete equations; that is, we compute an approximation of the non‐linear term using a select subset of interpolation points. Further, through this formulation we show similarities among the existing techniques of gappy proper orthogonal decomposition, missing point estimation, and empirical interpolation via coefficient‐function approximation. The resulting model reduction methodology is applied to a highly non‐linear combustion problem governed by an advection–diffusion‐reaction partial differential equation (PDE). Our reduced model is used as a surrogate for a finite element discretization of the non‐linear PDE within the Markov chain Monte Carlo sampling employed by the Bayesian inference approach. In two spatial dimensions, we show that this approach yields accurate results while reducing the computational cost by several orders of magnitude. For the full three‐dimensional problem, a forward solve using a reduced model that has high fidelity over the input parameter space is more than two million times faster than the full‐order finite element model, making tractable the solution of the statistical inverse problem that would otherwise require many years of CPU time. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we consider the problem of constructing reduced‐order models of a class of time‐dependent randomly parametrized linear partial differential equations. Our objective is to efficiently construct a reduced basis approximation of the solution as a function of the spatial coordinates, parameter space, and time. The proposed approach involves decomposing the solution in terms of undetermined spatial and parametrized temporal basis functions. The unknown basis functions in the decomposition are estimated using an alternating iterative Galerkin projection scheme. Numerical studies on the time‐dependent randomly parametrized diffusion equation are presented to demonstrate that the proposed approach provides good accuracy at significantly lower computational cost compared with polynomial chaos‐based Galerkin projection schemes. Comparison studies are also made against Nouy's generalized spectral decomposition scheme to demonstrate that the proposed approach provides a number of computational advantages. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
An eXtended Stochastic Finite Element Method has been recently proposed for the numerical solution of partial differential equations defined on random domains. This method is based on a marriage between the eXtended Finite Element Method and spectral stochastic methods. In this article, we propose an extension of this method for the numerical simulation of random multi‐phased materials. The random geometry of material interfaces is described implicitly by using random level set functions. A fixed deterministic finite element mesh, which is not conforming to the random interfaces, is then introduced in order to approximate the geometry and the solution. Classical spectral stochastic finite element approximation spaces are not able to capture the irregularities of the solution field with respect to spatial and stochastic variables, which leads to a deterioration of the accuracy and convergence properties of the approximate solution. In order to recover optimal convergence properties of the approximation, we propose an extension of the partition of unity method to the spectral stochastic framework. This technique allows the enrichment of approximation spaces with suitable functions based on an a priori knowledge of the irregularities in the solution. Numerical examples illustrate the efficiency of the proposed method and demonstrate the relevance of the enrichment procedure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A methodology is introduced for rapid reduced‐order solution of stochastic partial differential equations. On the random domain, a generalized polynomial chaos expansion (GPCE) is used to generate a reduced subspace. GPCE involves expansion of the random variable as a linear combination of basis functions defined using orthogonal polynomials from the Askey series. A proper orthogonal decomposition (POD) approach coupled with the method of snapshots is used to generate a reduced solution space from the space spanned by the finite element basis functions on the spatial domain. POD methods have been extremely popular in fluid mechanics applications and have subsequently been applied to other interesting areas. They have been shown to be capable of representing complicated phenomena with a handful of degrees of freedom. This concurrent model reduction on the random and spatial domains is applied to stochastic partial differential equations (PDEs) in natural convection processes involving randomness in the porosity of the medium and the Rayleigh number. The results indicate that owing to the multiplicative nature of the concurrent model reduction, extremely large computational gains are realized without significant loss of accuracy. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
This article aims to present a combination of stochastic finite element and spectral finite element methods as a new numerical tool for uncertainty quantification. One of the well-established numerical methods for reliability analysis of engineering systems is the stochastic finite element method. In this article, a commonly used version of the stochastic finite element method is combined with the spectral finite element method. Furthermore, the spectral finite element method is a numerical method employing special orthogonal polynomials (e.g., Lobatto) and quadrature schemes (e.g., Gauss-Lobatto-Legendre), leading to suitable accuracy, and much less domain discretization with excellent convergence as well. The proposed method of this article is a hybrid method utilizing efficiencies of both methods for analysis of stochastically linear elastostatic problems. Moreover, a spectral finite element method is proposed for numerical solution of a Fredholm integral equation followed by the present method, to provide further efficiencies to accelerate stochastic computations. Numerical examples indicate the efficiency and accuracy of the proposed method.  相似文献   

12.
This paper presents a spectral stochastic element free Galerkin method (SSEFGM) for the problems involving a random material property. The random material property and resulting system response quantity are represented by a probabilistic spectral expansion techniques (Karhunen–Loeve expansion and Polynomical Chaos series, respectively) and implemented into the element free Galerkin (EFG) analysis. Numerical solutions in 1D linear elastic problem with random elastic modulus are introduced, and compared with those of Monte Carlo simulation (MCS) so as to provide the validation of the proposed approach. The present SSEFGM approach can produce a probabilistic density distribution as well as a first‐ and second‐order statistical moments (mean and variance) of response quantity by a single calculation, which is distinguished from an iterative MCS. Moreover, the method is based on an element free analysis so that there is no need of nodal connectivities, which usually require more time and labourious task than main calculations. Thus the proposed SSEFGM approach can provide an alternative analysis tool for the problems contains a stochastic material property, and demands complex mesh structures. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
We consider model reduction for magneto‐quasistatic field equations in the vector potential formulation. A finite element discretization of such equations leads to large‐scale differential‐algebraic equations of special structure. For model reduction of linear systems, we employ a balanced truncation approach, whereas nonlinear systems are reduced using a proper orthogonal decomposition method combined with a discrete empirical interpolation technique. We will exploit the special block structure of the underlying problem to improve the performance of the model reduction algorithms. Furthermore, we discuss an efficient evaluation of the Jacobi matrix required in nonlinear time integration of the reduced models. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, a non‐intrusive stochastic model reduction scheme is developed for polynomial chaos representation using proper orthogonal decomposition. The main idea is to extract the optimal orthogonal basis via inexpensive calculations on a coarse mesh and then use them for the fine‐scale analysis. To validate the developed reduced‐order model, the method is implemented to: (1) the stochastic steady‐state heat diffusion in a square slab; (2) the incompressible, two‐dimensional laminar boundary‐layer over a flat plate with uncertainties in free‐stream velocity and physical properties; and (3) the highly nonlinear Ackley function with uncertain coefficients. For the heat diffusion problem, the thermal conductivity of the slab is assumed to be a stochastic field with known exponential covariance function and approximated via the Karhunen–Loève expansion. In all three test cases, the input random parameters are assumed to be uniformly distributed, and a polynomial chaos expansion is found using the regression method. The Sobol's quasi‐random sequence is used to generate the sample points. The numerical results of the three test cases show that the non‐intrusive model reduction scheme is able to produce satisfactory results for the statistical quantities of interest. It is found that the developed non‐intrusive model reduction scheme is computationally more efficient than the classical polynomial chaos expansion for uncertainty quantification of stochastic problems. The performance of the developed scheme becomes more apparent for the problems with larger stochastic dimensions and those requiring higher polynomial order for the stochastic discretization. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents an approach for efficient uncertainty analysis (UA) using an intrusive generalized polynomial chaos (gPC) expansion. The key step of the gPC-based uncertainty quantification ( UQ) is the stochastic Galerkin (SG) projection, which can convert a stochastic model into a set of coupled deterministic models. The SG projection generally yields a high-dimensional integration problem with respect to the number of random variables used to describe the parametric uncertainties in a model. However, when the number of uncertainties is large and when the governing equation of the system is highly nonlinear, the SG approach-based gPC can be challenging to derive explicit expressions for the gPC coefficients because of the low convergence in the SG projection. To tackle this challenge, we propose to use a bivariate dimension reduction method (BiDRM) in this work to approximate a high-dimensional integral in SG projection with a few one- and two-dimensional integrations. The efficiency of the proposed method is demonstrated with three different examples, including chemical reactions and cell signaling. As compared to other UA methods, such as the Monte Carlo simulations and nonintrusive stochastic collocation (SC), the proposed method shows its superior performance in terms of computational efficiency and UA accuracy.  相似文献   

16.
We address the curse of dimensionality in methods for solving stochastic coupled problems with an emphasis on stochastic expansion methods such as those involving polynomial chaos expansions. The proposed method entails a partitioned iterative solution algorithm that relies on a reduced‐dimensional representation of information exchanged between subproblems to allow each subproblem to be solved within its own stochastic dimension while interacting with a reduced projection of the other subproblems. The proposed method extends previous work by the authors by introducing a reduced chaos expansion with random coefficients. The representation of the exchanged information by using this reduced chaos expansion with random coefficients enables an expeditious construction of doubly stochastic polynomial chaos expansions that separate the effect of uncertainty local to a subproblem from the effect of statistically independent uncertainty coming from other subproblems through the coupling. After laying out the theoretical framework, we apply the proposed method to a multiphysics problem from nuclear engineering. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The penalty function approach has been recently formalized as a general technique for adjoining constraint conditions to algebraic equation systems resulting from variational discretization of boundary value problems by finite difference or finite element techniques. This paper studies the numerical behaviour of the penalty function method for the special case of individual equation constraints imposed on a symmetric system of linear algebraic equations. Constraint representation and computational roundoff error components are distinguished and asymptotically characterized in terms of the penalty function weight coefficients. On the basis of this study, practical rules for the automatic assignment of values to those coefficients within the linear equation solver are proposed. Numerical problems encountered in the case of more general constraints are briefly discussed, and procedures for circumventing such difficulties are suggested.  相似文献   

18.
The paper introduces a weighted residual‐based approach for the numerical investigation of the interaction of fluid flow and thin flexible structures. The presented method enables one to treat strongly coupled systems involving large structural motion and deformation of multiple‐flow‐immersed solid objects. The fluid flow is described by the incompressible Navier–Stokes equations. The current configuration of the thin structure of linear elastic material with non‐linear kinematics is mapped to the flow using the zero iso‐contour of an updated level set function. The formulation of fluid, structure and coupling conditions uniformly uses velocities as unknowns. The integration of the weak form is performed on a space–time finite element discretization of the domain. Interfacial constraints of the multi‐field problem are ensured by distributed Lagrange multipliers. The proposed formulation and discretization techniques lead to a monolithic algebraic system, well suited for strongly coupled fluid–structure systems. Embedding a thin structure into a flow results in non‐smooth fields for the fluid. Based on the concept of the extended finite element method, the space–time approximations of fluid pressure and velocity are properly enriched to capture weakly and strongly discontinuous solutions. This leads to the present enriched space–time (EST) method. Numerical examples of fluid–structure interaction show the eligibility of the developed numerical approach in order to describe the behavior of such coupled systems. The test cases demonstrate the application of the proposed technique to problems where mesh moving strategies often fail. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper an adaptive method for the analysis of thermomechanical coupled multi‐body contact problems is presented. The method is applied to non‐linear elastic solids undergoing finite (thermal) deformations. The contact model considers non‐linear pressure‐dependent heat flux as well as frictional heating in the interface. A time–space‐finite element discretization of the governing equations is formulated including unilateral constraints due to contact. A staggered solution algorithm has been constructed that allows an independent spatial discretization of the coupled subproblems. A posteriori projection‐based error estimators, which enforce implicitly the special boundary conditions due to thermal contact, are used to control the spatial discretization as well as the adaptive time stepping. Numerical examples are presented to corroborate the applicability of the adaptive algorithm to the considered problem type. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Dongbin Xiu 《工程优选》2013,45(6):489-504
A fast numerical approach for robust design optimization is presented. The core of the method is based on the state-of-the-art fast numerical methods for stochastic computations with parametric uncertainty. These methods employ generalized polynomial chaos (gPC) as a high-order representation for random quantities and a stochastic Galerkin (SG) or stochastic collocation (SC) approach to transform the original stochastic governing equations to a set of deterministic equations. The gPC-based SG and SC algorithms are able to produce highly accurate stochastic solutions with (much) reduced computational cost. It is demonstrated that they can serve as efficient forward problem solvers in robust design problems. Possible alternative definitions for robustness are also discussed. Traditional robust optimization seeks to minimize the variance (or standard deviation) of the response function while optimizing its mean. It can be shown that although variance can be used as a measure of uncertainty, it is a weak measure and may not fully reflect the output variability. Subsequently a strong measure in terms of the sensitivity derivatives of the response function is proposed as an alternative robust optimization definition. Numerical examples are provided to demonstrate the efficiency of the gPC-based algorithms, in both the traditional weak measure and the newly proposed strong measure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号