首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, controllable micro/nanostructures were successfully obtained by electrospinning with the emulsion dispersions of polystyrene and poly(vinyl alcohol) (PS/PVA). The micro/nanostructure of electrospun PS/PVA emulsion dispersions such as corn‐like, spindle‐like, and bowl‐like (or bracelet‐like) were precisely controlled by regulating the electrospun parameters including the surfactant, the applied voltages, and the compositions of PS/PVA emulsion dispersions. The non‐ionic surfactant (Poloxamer) was crucial for the stability of the PS/PVA emulsion dispersions although the surfactant in PS/PVA emulsion was in tiny amount. The high applied voltages were beneficial for the forming the “lined‐fiber” structure but not for spheroids structure (bracelet‐like structure). Moreover, the increasing content of PS in PS/PVA emulsion resulted in more spheroid structure than the “lined‐fiber.” This work was meaningful for the forming mechanism of micro/nanostructure in emulsion electrospinning and made a potential contribution for controllable fabrication of micro/nanostructure of the electrospun PS/PVA emulsion dispersions. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46288.  相似文献   

2.
以草酸钛钾为钛源,利用一步免模板法在水热条件下制备出二氧化钛空心球,其形成机理建立在由里及外的“Ostwald ripening”理论上.在不同的反应时间下研究了二氧化钛从亚稳相逐渐向稳定相的锐钛型二氧化钛空心球转变的过程.结合SEM的观察发现二氧化钛由光滑的固态粒子逐渐转变为表面为纳米棒状的二氧化钛空心球,TEM证实了所制备的空心球的直径约为1微米,单晶衍射图案(SAED)表明棒状晶体沿[001]面生长.  相似文献   

3.
Submicron scale particle aggregates with defined shape were prepared by self-assembling of sulphonated polystyrene latex particles at the interface of emulsion droplets. Several parameters were considered during the preparation, including the sulphonation time of the polystyrene latex particles, the composition of the oil phase, and the zeta potential of the sulphonated latex particle. To further improve the mechanical stability of the particle aggregates, a hard composite layer was formed by addition of melamine-formaldehyde (MF) prepolymer into the emulsion. The prepolymer was crosslinked onto the particles surface of sulphonated PS particle aggregates. The crosslinking reaction was catalysed by the acidity of sulfogroup. After evaporating off solvent, PS/MF hollow microsphere composites were obtained as mechanically stable dry material. The hollow microsphere composite was characterized by TGA, FTIR, optical microscopy, scanning and transmission electron microscopy.  相似文献   

4.
In this article, the microparticles of polystyrene‐poly(styrene‐co‐sodium 4‐styrenesulfonate) (PS‐PSS) coated by polyaniline (PANI) were prepared and hollow PANI microspheres were further obtained by dissolving the core. First, surface‐sulfonated monodispersed PS was prepared by copolymerization of sodium 4‐styrenesulfonate (SSS) and styrene with dispersion polymerization method. Then aniline was polymerized on the surface of the surface‐sulfonated PS (PS‐PSS) by chemical oxidative polymerization. After purification, we prepared core‐shell (PS‐PSS)/PANI particles. Hollow PANI microspheres were prepared by dissolving the plastic PS core of the (PS‐PSS)/PANI particles in chloroform. The growth process of PANI on the surface of PS‐PSS particles was investigated and the hollow PANI microspheres were characterized. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
The effect of molecular structure of styrene–butadiene block (SB) copolymers on the morphology, tensile properties, impact strength, and microhardness of polypropylene/polystyrene (PP/PS) (80/20) blends was studied. The addition of SB copolymers substantially reduces the size of dispersed PS particles formed at mixing. The distribution of SB copolymers between the interface and bulk phases is controlled by the length of styrene blocks in SB, but a decrease in the size of PS particles at mixing correlates with total molecular weight of SB copolymers. For a substantial part of compatibilized blends, PS particles aggregate rapidly during compression molding and form honeycomb‐like particles split by SB partitions, which persist at further annealing. Aggregation of PS particles continues slowly at further annealing. Blends containing PS particles with well‐developed honeycomb structure show lower yield stress, higher plasticity, and lower tensile impact strength than the blends having PS particles with simple or undeveloped honeycomb structure. Microhardness of PP/PS blends is additive and of PP/PS/SB blends is lower than the additive due to the effect of SB copolymers on crystalline structure of PP matrix. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

6.
On the basis of the water solubility of poly(N‐vinyl‐2‐pyrrolidinone), hollow porous poly(lactic acid) microspheres (HPPLAs) were prepared by a water‐in‐oil‐in‐water multiple‐emulsion solvent evaporation method. The influence of the concentration of the stabilizer Span80 in the oil phase on the morphology was investigated. It was found that when the content of Span80 solutions was 3.5 wt %, most HPPLAs were about 2 μm in diameter. Field scanning electron microscopy results show that the HPPLAs were porous and hollow. The structure and crystal form of the HPPLAs were characterized by Fourier transform infrared spectroscopy and X‐ray diffraction analysis. Using these HPPLAs as degradable templates, we successfully synthesized Litchi‐like polystyrene (PS) microspheres about 2 μm in diameter by the emulsion method. When used as drug carriers, these HPPLAs would be convenient in which to embed drugs, whereas the Litchi‐like PS microspheres may have potential as new materials for polymer modification. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

7.
Monodisperse magnetic polystyrene (PS) microspheres were prepared in the presence of PS seed particles and styrene‐based magnetic colloid by the method of magnetic colloid swelling polymerization. The PS seed particles were prepared in advance by soap‐free emulsion polymerization. Styrene‐based magnetic colloid was used for swelling the PS seed particles in the magnetic colloid swelling polymerization process. After polymerization, functional amino groups were introduced onto the surface of the magnetic PS microspheres by surface Friedel‐Crafts acylation reaction. The morphology, size distribution, and magnetic properties of magnetic PS microspheres were characterized with scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), respectively. SEM showed that the magnetic PS microspheres had an average size of 1078 nm with a narrow size distribution. VSM showed that the magnetic PS microspheres were superparamagnetic, and saturation magnetization was found to be 5.714 emu/g. The concentration of functional amino groups on the surface of magnetic PS microspheres was measured by atomic absorption spectroscopy and UV−Vis spectroscopy, and the concentration of amino groups was found to be 0.168 mmol/g. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐co‐HFP) hollow fiber membranes were prepared by using the phase inversion method. The effect of polyethylene glycol (PEG‐600Mw) with different concentrations (i.e., 0, 5, 7, 10, 12, 15, 18, and 20 wt %) as a pore former on the preparation and characterization of PVDF‐co‐HFP hollow fibers was investigated. The hollow fiber membranes were characterized using scanning electron microscopy, atomic force microscopy, and porosity measurement. It was found that there is no significant effect of the PEG concentration on the dimensions of the hollow fibers, whereas the porosity of the hollow fibers increases with increase of PEG concentration. The cross‐sectional structure changed from a sponge‐like structure of the hollow fiber prepared from pure PVDF‐co‐HFP to a finger‐like structure with small sponge‐like layer in the middle of the cross section with increase of PEG concentration. A remarkable undescribed shape of the nodules with different sizes in the outer surfaces, which are denoted as “twisted rope nodules,” was observed. The mean surface roughness of the hollow fiber membranes decreased with an increase of PEG concentration in the polymer solution. The mean pore size of the hollow fibers gradually increased from 99.12 to 368.91 nm with increase of PEG concentration in polymer solution. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
On the basis of an oil‐in‐water‐in‐oil emulsion, polyacrylamide (PAM) beads with a dual porous structure were fabricated using both an emulsion and polystyrene (PS) particles as templates. Uniform oil‐in‐water droplets dispersed in an oil phase (a sedimentation medium) were polymerized in a reaction glass column, where the water phase contained acrylamide and PS particles. Afterward, the cross‐linked PAM beads were immersed in n‐hexane and methanol to remove all of the oil phases and then in acetone and toluene to remove the PS particles, resulting in dual porous PAM beads. The PAM beads exhibited macropores (5–30 μm) and micropores (approximately 400 nm) that were developed by the removal of the inner oil phase and the PS particles, respectively. The employment of PS particles as templates resulted in a remarkable increase in the pore area from 2.2 to 6.3 m2/g. In addition, an increase in the volume ratio of the inner oil phase to the water phase for the primary oil‐in‐water emulsion led to an increase in the pore volume and a reduction in the pore area. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

10.
Submicron polystyrene (PS) latex particles were used as seed in seeded dispersion polymerization of methyl methacrylate (MMA) to investigate the particle nucleation and aggregation behavior in this type of polymerization. The PS seed particles were located and tracked during the reaction using a refractive index matching technique. The number of PS seed particles present in the poly(methyl methacrylate) (PMMA) particles was investigated in detail throughout the reaction. The change in the distribution of PMMA particle populations containing different numbers of seed particles indicated that intensive nucleation and aggregation occurred during the early stage of the reaction until a transition point of 8.7% conversion was attained under the reaction conditions studied. The size of the large particles at this point was around 1 μm. These particles were regarded as mature particles that did not aggregate with other mature particles. Meanwhile, immature particle were still generated continuously from the continuous phase. These immature particles could not survive the aggregation process to grow to become mature particle, but instead, were captured by the mature particles. Therefore, the total number of the mature particles remained constant from this point until the end of the reaction. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
The sunflower‐like silica core‐polypyrrole (PPy) shell nanocomposites were prepared by using silica sulfuric acid as templates. The silica sulfuric acid was obtained by treating directly the silica nanoparticles with chlorosulfonic acid. The sulfonic groups (? SO3H) on the surface of silica sulfuric acid not only offered the active sites for formation of polypyrrole particles but also acted as dopant agents in PPy. The nanostructures of sunflower‐like silica/PPy nanocomposites and hollow PPy capsules were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The molecular structure and content of PPy were determined by Fourier transform infrared (FTIR) and thermal gravimetric analysis (TGA), respectively. The highest conductivity of nanocomposites is 2.4 S/cm. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
In this study, spherical ordered mesoporous silica (s‐OMS) was applied as a new type of nucleating agent in polystyrene (PS) foaming with supercritical CO2 as a blowing agent. These s‐OMS particles were modified by the selective grafting of PS brushes on the outside surface, by which the mesoporous structure inside particles could be maintained. Transmission electron microscopy, X‐ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, and Brunauer–Emmett–Teller surface area analysis were used to characterize the structure of the original and modified particles; these indicated that the PS brushes were grafted on the outside surface and the inside porous structure were maintained. PS/s‐OMS–PS composites were prepared by a solution blending method, and the s‐OMS–PS particles could have been well dispersed in the PS matrix because of the surface modification. Subsequently, PS and composite microcellular foams were prepared by a batch foaming process, and the morphology characterization on these foams showed that the s‐OMS particles exhibited an excellent heterogeneous effect on PS foaming. The heterogeneous effect became more significant when the foaming temperature or saturation pressure was low. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4308–4317, 2013  相似文献   

13.
A facile and novel strategy was reported on the fabrication of raspberry‐like SiO2/polystyrene (SiO2/PS) composite particles by emulsion polymerization in the presence of vinyl‐functionalized silica (vinyl‐SiO2) particles, which were prepared via a one‐step sol–gel process using vinyltriethoxysilane as the precursor. The submicron vinyl‐SiO2 particles were used as the core, and nanosized PS particles were then adsorbed onto the vinyl‐SiO2 particles to form raspberry‐like composite particles during the polymerization process. The composition, morphology, and structure of the vinyl‐SiO2 particles and the SiO2/PS hybrid particles were characterized by thermogravimetric analysis, nuclear magnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy. Superhydrophobic surface can be constructed by directly depositing the raspberry‐like SiO2/PS composite particles on glass substrate, and the water contact angle can be adjusted by the styrene/SiO2 weight ratio. In addition, the superhydrophobic film possessed a strong adhesive force to pin water droplet on the surface even when the film was turned upside down. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

14.
Polyethylene hollow spheres with diameters of 0.4–2 mm were synthesized by a two‐step slurry polymerization in a single reactor with a spherical MgCl2‐supported Ziegler‐Natta catalyst activated by triethylaluminum, in which the first step was prepolymerization with 0.1 MPa propylene and the second step was ethylene polymerization under 0.6 MPa. The prepolymerization step was found necessary for the formation of hollow spherical particles with regular shape (perfectly spherical shape). The effects of adding small amount of propylene (propylene/ethylene < 0.1 mol/mol) in the reactor after the prepolymerization step were investigated. Average size of the polymer particles was increased, and the polymerization rate was markedly enhanced by the added propylene. Development of the particle morphology with polymerization time was also studied. The polymer particles formed by less than 20 min of ethylene polymerization showed hollow spherical morphology with thin shell layer. Most of the particles had ratio of shell thickness/particle radius smaller than 0.5. By prolonging the ethylene polymerization, the shell thickness/particle radius ratio gradually approached 1, and the central void tended to disappear. Central void in polymer particles formed from smaller catalyst particles disappeared after shorter time of polymerization than those formed from bigger catalyst particles. The shell layer of the hollow particles contained large number of macro‐, meso‐ and micro‐pores. The mesopore size distributions of four typical samples were analyzed by nitrogen adsorption–desorption experiments. A simplified multigrain model was proposed to explain the morphogenesis of the hollow spherical particles. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43207.  相似文献   

15.
The polyaniline (PANI) morphological structure is strongly correlated with the preparation procedure, yielding diverse geometries such as nano‐tubes, belts, rods, fibres and particles. In this study, the synthesis of a novel PANI morphology of consisting of hollow needles and urchin‐like structures is presented and its formation mechanism is explained. The polymer was synthesized by chemical oxidative polymerization of aniline in the presence of magnesium oxide as a structural directing agent. The morphological study of the urchin‐like PANI was conducted using scanning electron microscopy and in situ monitoring of needle growth was done using optical microscopy. The structure and functional groups of these novel structures were characterized using Fourier transform infrared spectroscopy. Additionally, the formation mechanism is modelled based on the multi‐layer theory where a core–shell structure exists between the polymer (shell) and the magnesium oxide particles (core). © 2014 Society of Chemical Industry  相似文献   

16.
Preparation of Spherical Hexagonal Mesoporous Silica   总被引:1,自引:0,他引:1  
A series of hexagonal mesoporous silica (HMS) have been synthesized by the neutral assemble pathway in water-alcohol cosolvent systems, using dodecylamine (DDA) and tetraethyl orthosilicate (TEOS) as the starting materials. These materials were characterized with powder X-ray diffraction, nitrogen sorption measurement, differential thermal analysis, and transmission electron microscopy. The XRD patterns of these samples exhibited a strong intense reflection at low angle, suggesting the excellent mesostructures of the samples. The particle size of HMS decreased and the morphology of HMS exhibited high textural porosity as the HMS was prepared with high addition rate of TEOS. The particle size of HMS prepared without aging was smaller than that aged for 18 h, due to the reaction time of TEOS was not enough to form complete particles. Addition of NaCl and HCl hindered the formation of HMS mesoporous structure. In contrast, addition of 1-butanol did not affect the formation of HMS mesoporous structure. The sphereical HMS silica with uniform size has been synthesized by adjusting DDA and TEOS concentrations. The shape of HMS became larger and more spherical as the concentrate on of DDA decreased. The stirring rate of the reaction mixture had no effect on either the shape or the size of the spheroid HMS silicas. However, the particles started to crack at higher stirring rates.  相似文献   

17.
Hollow‐fiber ultrafiltration (UF) membranes were prepared from blends of poly(vinyl chloride) (PVC) and polystyrene (PS) with a dry/wet phase inversion method. Poly(ethylene glycol) (PEG) and N,N‐dimethylacetamide were used as the additive and solvent, respectively. The effects of the PEG concentration in the dope solution as an additive on the cross sections and inner and outer surface morphologies, permeability, and separation performance of the hollow fibers were examined. The mean pore size, pore size distribution, and mean roughness of both the inner and outer surfaces of the produced hollow fibers were determined by atomic force microscopy. Also, the mechanical properties of the hollow‐fiber membranes were investigated. UF experiments were conducted with aqueous solutions of poly(vinyl pyrrolidone) (PVP; K‐90, Mw = 360 kDa). From the results, we found that the PVC/PS hollow‐fiber membranes had two layers with a fingerlike structure. These two layers were changed from a wide and long to a thin and short morphology with increasing PEG concentration. A novel and until now undescribed shape of the nodules in the outer surfaces, which was denoted as a sea‐waves shape, was observed. The outer and inner pore sizes both increased with increasing PEG concentration. The water permeation flux of the hollow fibers increased from 104 to 367 L m?2 h?1 bar?1) at higher PEG concentrations. The PVP rejection reached the highest value at a PEG concentration of 4 wt %, whereas at higher values (from 4 to 9 wt %), the rejection decreased. The same trend was found also for the tensile stress at break, Young's modulus, and elongation at break of the hollow fibers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 989‐1004, 2013  相似文献   

18.
This paper reports an easy and effective way to fabricate polystyrene/poly (N-isopropylacrylamide) (PS/PNIPAM) core-shell particles and PNIPAM hollow spheres. The main point of the method is to take advantage of the hydrophobic interaction between initiator and PS particles. The hydrophobic azodiisobutyronitriles automatically concentrate around the PS particles and initiate polymerization of N-isopropylacrylamide (NIPAM) and the crosslinker methylene bisacrylamide (MBA), which dissolve in the aqueous phase, at the surface of the PS nanoparticles. Then, PNIPAM adheres to the PS particles to form a core-shell structure as a result of their hydrophobic interaction. This interaction is due to the unique property of PNIPAM, namely, its ability to transition from hydrophilic to hydrophobic when the temperature rises to 32°C. Furthermore, the hollow PNIPAM spheres were obtained by etching the PS core with chloroform.  相似文献   

19.
Poly(imide) (PI) hollow fiber membranes were prepared by using classical phase inversion process. Effects of different external coagulation bath temperatures (ECBT) and various bore flow rates (BFR) on the morphology and separation performance of the membranes were studied. Cross‐section, inner and outer structures were characterized by using scanning electron microscope and atomic force microscopy (AFM). Mean pore size, pore size distribution, and mean roughness of the PI hollow fibers surfaces were estimated by AFM. It was found that the hollow fibers morphology composed of sponge‐like and finger‐like structures with different ECBT and BFR. A circular shape of the nodules with different sizes was observed in the outer surface of the PI hollow fibers. Mean pore size of the outer surface increases with increasing ECBT and BFR. The important result observed in this study is that the ECBT clearly has the largest effect on hollow fiber PI membrane roughness compared with the BFR. Pure water permeability of the PI hollow fibers was improved with increase of ECBT and BFR. The solute rejection (R%) was reduced when the ECBT and BFR was increased. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40428.  相似文献   

20.
A polystyrene (PS)/poly(butyl acrylate) (PBA) composite emulsion was produced by seeded emulsion polymerization of butyl acrylate (BA) with PS seed particles which were prepared by emulsifier‐free polymerization of styrene with potassium persulfate (KPS) under a nitrogen atmosphere at 70°C for 24 h with stirring at 60 rpm and swelled with the BA monomer in an ethanol/water medium. The structure of the PS/PBA composite particles was confirmed by the presence of the characteristic absorption band attributed to PS and PBA from FTIR spectra. The particles for pure PS and PS/PBA with a low content of the BA monomer were almost spherical and regular. As the BA monomer content was increased, the particle size of the PS/PBA composite particles became larger, and more golf ball‐like particles were produced. The surface morphology of the PS/PBA composite particles was investigated by AFM and SEM. The Tg's attributed to PS and PBA in the PS/PBA composite particles were found at 110 and ?49°C, respectively. The thermal degradation of the pure PS and PS/PBA composite particles occurred in one and two steps, respectively. With an increasing amount of PBA, the initial thermal decomposition temperature increased. On the contrary the residual weight at 450°C decreased with an increasing amount of PBA. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 595–601, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号