首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chitosan is a biodegradable, non‐toxic, biocompatible polymer convenient for use in drug delivery. In this study, hybrid polymeric networks (HPNs) based on chitosan, itaconic acid and poly(vinyl alcohol) (PVA) were prepared and characterized. Chitosan was dissolved in itaconic acid in order to obtain ionic crosslinking with the dicarboxylic acid. In the second step, this chitosan/itaconic acid network was mixed with PVA and chemically crosslinked with glutaraldehyde. The chitosan/itaconic acid ratio was kept constant, while the concentrations of PVA and glutaraldehyde were varied. All samples were characterized using swelling studies, dynamic mechanical analysis, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, X‐ray diffraction and scanning electron microscopy. The equilibrium degrees of swelling obtained for the HPNs were higher than most of the values reported for chitosan hydrogels obtained by dissolving chitosan in acetic acid or HCl aqueous solutions. This method of synthesis also resulted in hydrogels with better mechanical properties and thermal stability. By changing the PVA content and the degree of crosslinking, it is possible to finely tune the properties of the HPNs, which could make them suitable as potential matrices in controlled drug delivery. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
Novel pH‐sensitive chitosan‐poly(acrylamide‐co‐itaconic acid) hydrogels were prepared by free radical copolymerization of acrylamide and itaconic acid (IA) in chitosan solution. The hydrogels were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and the swelling ratios of the hydrogels in water (pH 6.8) and pH 1.2. The influence of composition on the thermal properties of the hydrogels was assessed. The glass transition temperatures of the samples increased with IA content, ranging from 110 to 136 °C. Swelling of the hydrogels was found to obey second‐order kinetics with respect to the remnant swelling, indicating that diffusion is controlled by the relaxation of chains. The equilibrium swelling degree was strongly dependent on pH and composition. At both pH values the highest water uptake was obtained for the IA‐free sample M1. From the equilibrium swelling results the average molar mass between crosslinks, Mc, and the crosslink density of the chitosan‐poly(acrylamide‐co‐itaconic acid) samples were calculated. The results evidenced the reinforcing effect of IA on the hydrogel structure. It is concluded that these highly swellable pH‐sensitive hydrogels can be useful for applications in biomedicine and pharmacy. © 2013 Society of Chemical Industry  相似文献   

3.
A new kind of pH and temperature responsive poly(acrylamide‐co‐itaconic acid) hydrogel was prepared by free radical polymerization using ammonium persulfate as initiator and different comonomer ratios. The hydrogels were characterized in terms of chemical composition, swelling‐deswelling behavior, morphology, crystallographic behavior, and drug release properties. All the hydrogels showed high swelling ability in aqueous solutions, the maximum being at pH 7. Swelling decreased on either side of pH 7 (i.e., both in acidic and alkaline region) and increased with increase in temperature. The hydrogel with 10 mol% itaconic acid (IA) absorbed maximum water among the copolymer gels. The cellular structures of the hydrogels were clearly revealed by microscopic analysis and SEM pictures. Swelling of the gels in water followed non‐Fickian type of diffusion principle. The hydrogel was proved to be a controlled release vehicle, for example in drug delivery by using its smart properties. The hydrogel with 10 mol% IA also absorbed maximum amount of drug (ascorbic acid) under study. Incorporation of drug in hydrogel matrix was established from XRD peak analysis. POLYM. ENG. SCI., 55:113–122, 2015. © 2014 Society of Plastics Engineers  相似文献   

4.
为制备一种具有良好生物相容性、可控缓释的物理交联的水凝胶敷料,选用类氨基酸单体N-丙烯酰基甘氨酰胺(NAGA)与生物发酵产物衣康酸(IA)为单体,在紫外光条件下,通过自由基聚合,在不需要外加任何交联剂条件下即可形成水凝胶聚(N-丙烯酰基甘氨酰胺-衣康酸)(P(NAGA-IA))。所得水凝胶具有溶胶-凝胶转变温度(UCST)、较高的水溶胀率(40倍)及力学性能(压缩模量最高540 kPa)、较优的药物负载性和缓释性,这是因为NAGA单元提供分子间多重氢键作用,进而赋予了水凝胶较优的综合性能;而IA单元赋予了聚合物的pH刺激响应性,从而可诱导药物的释放。因此,所得P (NAGA-IA)水凝胶可作敷料用于创伤治疗。  相似文献   

5.
In the present work crosslinked methyl methacrylate-co-itaconic acid (MMA-co-IA) hydrogels were prepared by free radical copolymerization of methyl methacrylate (MMA) with itaconic acid (IA) using ethylene glycol dimethacrylate (EGDMA) and N, N methylene bisacrylamide (MBAAm) as crosslinkers and benzoyl peroxide as initiator. Prepared hydrogels were investigated for dynamic and equilibrium swelling studies. For swelling behaviour, effect of pH, monomeric compositions, degree of crosslinking and type of crosslinking agent were investigated. Swelling studies were performed in the USP phosphate buffer solutions of varying pH 1.2, 4.5, 5.5, 6.5 and 7.0. Results showed that swelling increased by increasing IA content in hydrogels structure. This may be due to the presence of more carboxylic groups available for ionization. Swelling was decreased with increase in crosslinking ratio owing to tighter hydrogel structure. Hydrogels were characterized by Fourier transform infrared (FTIR), and scanning electron microscope (SEM). Polymer-solvent interaction parameters (χ) of hydrogels were determined by using Flory–Rehner theory of equilibrium swelling values. The analysis of diffusion mechanism from gels using Peppas model showed that all monomeric compositions and degrees of crosslinking followed Fickian diffusion.  相似文献   

6.
Hydrogels usually have a smaller mechanical strength and toughness than generic polymeric materials. Therefore, many studies report improvements for mechanical properties of hydrogels by preparing double‐network hydrogels, nanocomposite hydrogels, and nanostructured hydrogels. In this study, interpenetrating‐type dually‐crosslinked hydrogels were prepared via free radical crosslinking polymerization of acrylamide monomers in the presence of poly(aspartic acid) and subsequent immersion in a metal ion containing aqueous solution to induce extra physical crosslinking through ionic or coordination bonding. Using this approach, the mechanical properties of inherently weak and brittle homopolymer gels could be improved via interpenetrating the double network formed by both covalent bonding and metal coordination‐assisted reversible physical crosslinks. The preparation, swelling behavior, morphology, and mechanical properties of these hydrogels are presented. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45925.  相似文献   

7.
Star‐shaped polycaprolactone (stPCL)/chitosan composite hydrogel was fabricated by simply melt/solution blending between chitosan/dicarboxylic acid solution and melted stPCL, using 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride and N‐hydroxysuccinimide as conjugating agents to obtain a composite hydrogel. Here, stPCL and modified stPCL were investigated. The stPCL was modified to have a carboxyl‐terminated chain (stPCL‐COOH). The composite hydrogels were transparent. The network structure of the composite hydrogels was investigated. stPCL‐OH had no chemical bond to the chitosan network but stPCL‐COOH could co‐crosslink with the chitosan network. The porous structure and porosity of the composite hydrogels were similar to those of chitosan hydrogel. However, the hydrophobicity of stPCL resulted in a lower swelling ratio compared to chitosan hydrogel. The rheological analysis of the composite hydrogel exhibited a stable crosslinked network. Compression testing of the composite hydrogel obtained from stPCL‐COOH at a mole ratio of stPCL‐COOH and chitosan of 1:1 had optimum compressive mechanical properties comparable to chitosan hydrogel due to a synergistic effect of the flexibility in stPCL and the co‐crosslinking of stPCL‐COOH with the chitosan network. © 2020 Society of Chemical Industry  相似文献   

8.
In this study hydrogels were synthesized by the copolymerization of acrylamide and itaconic acid in the presence of poly(N‐vinyl‐2‐pyrrolidone) in an aqueous medium. The incorporation of a small amount of itaconic acid resulted in the transition of the swelling behavior from Fickian to non‐Fickian. The hydrogels showed good response to the valency of the counterions and pH of the swelling media. The equilibrium water uptake increased with the pH of the external solution, thus attaining a maximum value at pH 7–8. The gels exhibited a number of deswelling–swelling cycles while maintaining mechanical strength and shape stability. The amount of itaconic acid present in the system affected the swelling behavior of the hydrogels in a rather unusual way. At pH 2.0 the equilibrium water uptake increased with the amount of acid monomer up to 15 mM, remained almost constant for a very small range of concentrations (i.e., up to 22 mM), and then finally decreased with the further increase of the acid content. However, a continuous increase was observed at the pH 7.0 of the swelling media. The hydrogels showed very poor temperature dependency and the activation energies for the samples with and without itaconic acid were 29.09 and 19.92 kJ mol?1, respectively. Finally, the swelling and deswelling processes were explained on the basis of two different mechanisms that were followed by the gels. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1717–1729, 2002  相似文献   

9.
pH‐sensitive dextran–poly(methacrylic acid) (Dext–pMeAc) full interpenetrating network hydrogels (INHs) were prepared by simultaneous radical polymerization of methacrylic acid monomer (MeAc) and Dext polymer chains in the presence of N,N‐methylenebisacrylamide (MBA) as crosslinker in aqueous solution. These hydrogels were investigated as a drug carrier. The influence of MeAc and MBA contents in the network hydrogels on the swelling behaviour and mechanical strength of prepared Dext–pMeAc INHs was evaluated. Dext–pMeAc INHs were characterized by Fourier transform IR spectroscopy, and kinetic swelling measurements were carried out in deionized water and in simulated gastric fluids (pH 1.1 and pH 7.4). Dext–pMeAc/1‐1, Dext–pMeAc/3‐1 and Dext–pMeAc/5‐1 hydrogels with molar ratios of nDext/nMeAc = 10 and nMBA/nDext = 10, 30 and 50 respectively showed a core–shell structure when they swelled. This phenomenon was not observed in Dext–pMeAc/5‐2, Dext–pMeAc/5‐3 and Dext–pMeAc/5‐5 hydrogels containing a higher amount of Dext in the gels. The swelling data proved the formation of INHs with pH‐sensitive behaviour. A drug release study was performed using Rhodamine 6G fluorescent dye as a model hydrophilic bioactive molecule. The in vitro release rate of Rhodamine 6G from Dext–pMeAc/5‐3 hydrogel was dependent on the pH of the release medium. Copyright © 2012 Society of Chemical Industry  相似文献   

10.
Temperature- and pH-sensitive hydrogels based on N-isopropylacrylamide (NiPAAm) and itaconic acid (IA) were applied for immobilization of lipase from Candida rugosa (CRL). The hydrogels were synthesized by free radical crosslinking copolymerization in the presence of lipase. Characterization of samples by swelling studies, at pH 2.20 and 6.80 at a temperature of 37 °C, scanning electron microscopy (SEM) and Fourier transform infrared analysis (FT-IR) confirmed that the degree of crosslinking, the non-ionic/ionic (NiPAAm/IA) ratio and the enzyme content had impacts on the hydrogel structure, mechanical properties, morphology and swelling kinetics. All hydrogels demonstrated protein loading efficiencies as high as 95 wt.%. A specific activity of the immobilized lipase of around 38 IU/g was attained for an enzyme loading of 20.0 wt.%. As a result, improved pH and temperature optima values were obtained for the immobilized systems in relation to those for the free lipase.  相似文献   

11.
The present work aims to show how the main properties of poly(methacrylic acid) (PMAA) hydrogels can be engineered by means of several silicon-based fillers (Laponite XLS/XLG, montmorillonite (Mt), pyrogenic silica (PS)) employed at 10 wt% concentration based on MAA. Various techniques (FT-IR, XRD, TGA, SEM, TEM, DLS, rheological measurements, UV-VIS) were used to comparatively study the effect of these fillers, in correlation with their characteristics, upon the structure and swelling, viscoelastic, and water decontamination properties of (nano)composite hydrogels. The experiments demonstrated that the nanocomposite hydrogel morphology was dictated by the way the filler particles dispersed in water. The equilibrium swelling degree (SDe) depended on both the pH of the environment and the filler nature. At pH 1.2, a slight crosslinking effect of the fillers was evidenced, increasing in the order Mt < Laponite < PS. At pH > pKaMAA (pH 5.4; 7.4; 9.5), the Laponite/Mt-containing hydrogels displayed a higher SDe as compared to the neat one, while at pH 7.4/9.5 the PS-filled hydrogels surprisingly displayed the highest SDe. Rheological measurements on as-prepared hydrogels showed that the filler addition improved the mechanical properties. After equilibrium swelling at pH 5.4, G’ and G” depended on the filler, the Laponite-reinforced hydrogels proving to be the strongest. The (nano)composite hydrogels synthesized displayed filler-dependent absorption properties of two cationic dyes used as model water pollutants, Laponite XLS-reinforced hydrogel demonstrating both the highest absorption rate and absorption capacity. Besides wastewater purification, the (nano)composite hydrogels described here may also find applications in the pharmaceutical field as devices for the controlled release of drugs.  相似文献   

12.
A novel pH‐sensitive hydrogel system composed of itaconic acid (IA) and N‐[3‐(dimethylamino) propyl] methacrylamide was designed. This system was prepared by aqueous copolymerization with N,N‐methylene bisacrylamide as a chemical crosslinker. The chemical structure of the hydrogels was characterized by Fourier transform infrared (FTIR) spectroscopy. The microstructure and morphology of the hydrogels were evaluated by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). The SEM study of hydrogels on higher magnification revealed a highly porous morphology with uniformly arranged pores ranging from 40 to 200 μm in size. XRD analysis revealed the amorphous nature of the hydrogels, and it was found that an increase in the IA content in the monomer feed greatly reduced the crystallinity of the hydrogels. Swelling experiments were carried out in buffer solutions at different pH values (1.2–10) at 37°C ± 1°C to investigate their pH‐dependent swelling behavior and dimensional stability. An increase in the acid part (IA) increased the swelling ratio of the hydrogels. Temperature‐sensitive swelling of the hydrogels was investigated at 20–70°C in simulated intestinal fluid. The hydrogels swelled at higher temperatures and shrank at lower temperatures. 5‐Aminosalicylic acid (5‐ASA) was selected as a model drug, and release experiments were carried out under simulated intestinal and gastric conditions. 5‐ASA release from the poly N‐[3‐(dimethylamino) propyl] methacrylamide‐co‐itaconic acid‐80 (PDMAPMAIA‐80) hydrogel was found to follow non‐Fickian diffusion mechanism under gastric conditions, and a super case II transport mechanism was found under intestinal conditions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
A surfactant‐free method to produce responsive polymer microgels is introduced. As an example, poly(methacrylic acid) hydrogels with varying crosslinking density have been synthesized in bulk and then chopped using a high shear mechanical cutter to form microgel particles dispersed in water. The mechanical cutting technique enables the concentration and particle size distribution of the microgel suspensions to be easily controlled, therefore making the rheology of the suspensions tuneable. The particle size distribution of the dispersions, characterized using light scattering, was dependent on the speed and duration of mechanical cutting. The particle size distribution also depended on the degree of crosslinking of the hydrogel. The higher the crosslinking density, the lower the average mean diameter of the resulting microgel particles. The lower the crosslinking density of the hydrogel, the larger the difference between the maximum and minimum particle size. The time to complete swelling of the particles upon change in pH was measured to be up to 45 s, depending on the particle size. The rheology of the resulting suspensions as a function of pH was investigated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 104: 1912–1919, 2007  相似文献   

14.
Copolymer hydrogels of N-isopropylacrylamide and itaconic acid (IA), crosslinked with N,N′-methylenebisacrylamide, were prepared by radical copolymerization. These hydrogels were investigated with regard to their composition to find materials with satisfactory swelling and drug release properties. A paracetamol is used as a model drug to investigate drug release profile of the hydrogels. It was found that the investigated hydrogels exhibited pH- and temperature-dependent swelling behaviour with restricted swelling and lower equilibrium degree of swelling at lower pH values and temperatures above the LCST value of PNIPAM (around 34 °C). The diffusion exponent for paracetamol release indicate that the mechanism of paracetamol release are governed by Fickian diffusion, while in all release media initial diffusion coefficient was lower than late time diffusion coefficient. Furthermore, the paracetamol release rate depends on the hydrogel degree of swelling and it increased in the first stage of diffusion process, whereas was no significant difference thereafter. The presence of the IA moieties incorporated into the network weakened the shear resistance of the hydrogels. In order to calculate the pore size the characteristic ratio for PNIPAM, C n  = 11.7, was calculated. Based on the pore size, the investigated hydrogels can be regarded as microporous. According to the obtained results swelling behaviour, mechanical properties, drug-loading capacity and the drug release rate could be controlled by hydrogel composition and crosslinking density, which is important for application of the investigated hydrogels as drug delivery systems.  相似文献   

15.
Summary Novel poly(Bisomer/HEMA/IA) hydrogels were prepared by radical copolymerization of poly(alkylene glycol) (meth)acrylates, i.e. short chains Bisomers, 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) in a mixture of water/ethanol as solvent. These hydrogels were characterized in terms of swelling in conditions similar to the biological fluids (pH range 2.20–7.40 buffer solutions), compression-strain measurements, thermal properties and morphology. The influence of the type of Bisomer and of the itaconic acid on swelling and mechanical properties, as well as on morphology and thermal behavior of the resulting hydrogels, were investigated. The in vitro study of biocompatibility, carried out with the hydrogels containing different types of Bisomers, showed no evidence of cell toxicity nor any considerable hemolytic activity. All hydrogels showed satisfactory bioadhesive properties, so these materials have potential as drug carriers or biological glue and sealants.  相似文献   

16.
Copolymers composed of poly(vinyl alcohol) (PVA) and poly(dimethylsiloxane) (PDMS) were crosslinked with chitosan to prepare semi‐interpenetrating polymer network (IPN) hydrogels by an ultraviolet (UV) irradiation method for application as potential biomedical materials. PVA/PDMS copolymer and chitosan was cast to prepare hydrogel films, followed by a subsequent crosslinking with 2,2‐dimethoxy‐2‐phenylacetophenone as a nontoxic photoinitiator by UV irradiation. Various semi‐interpenetrating polymer networks (semi‐IPNs) were prepared from different weight ratios of chitosan and the copolymer of PVA/PDMS. Photocrosslinked hydrogels exhibited an equilibrium water content (EWC) in the range of 65–95%. Swelling behaviors of these hydrogels were studied by immersion of the gels in various buffer solutions. Particularly, the PCN13 as the highest chitosan weight ratio in semi‐IPN hydrogels showed the highest EWC in time‐dependent and pH‐dependent swelling. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2591–2596, 2002  相似文献   

17.
Semi‐interpenetrating network hydrogel films were prepared using hemicellulose and chemically crosslinked chitosan. Hemicellulose was extracted from aspen by using a novel alkaline treatment and characterized by HPSEC, and consisted of a mixture of high and low molecular weight polymeric fractions. HPLC analysis of the acid hydrolysate of the hemicellulose showed that its major constituent sugar was xylose. X‐ray analysis showed that the relative crystallinity of hydrogels increased with increasing hemicellulose content up to 31.3%. Strong intermolecular interactions between chitosan and hemicellulose were evidenced by FT‐IR analysis. Quantitative analysis of free amino groups showed that hemicellulose could interrupt the chemical crosslinking of chitosan macromolecules. Mechanical testing and swelling experiments were used to define the effective network crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and mainly consisted of H‐bonded bound water. Results revealed that by altering the hydrogel preparation steps and hemicellulose content, crosslink density and swelling behavior of semi‐IPN hydrogels could be controlled without deteriorating their mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Using hydrophobic acrylic acid-2-ethylhexyl ester (AAEHE) as a comonomer of methacrylic acid (MAA), a series of hydrophobically modified (HM) poly(methacrylic acid) (PMAA) (HMPMAA) hydrogels were prepared by UV solution copolymerization and studied as controlled-release matrices. The result indicates that swelling degree of the HMPMAA hydrogels can sensitively respond to change in pH. However, the presence of hydrophobic AAEHE segments influences swelling kinetics of PMAA hydrogel evidently. Using p-hydroxyanisole (PHAS) as a model molecule, controlled-release behaviors of the HMPMAA hydrogels were investigated. It is found that the presence of hydrophobic AAEHE segments can markedly slow down the release rate of PHAS from PMAA-based hydrogels regardless of pH 1.4 or 7.4.  相似文献   

19.
A novel full‐polysaccharide hydrogel was prepared by crosslinking of chitosan with periodate‐oxidized sucrose. A tetraaldehyde molecule is synthesized via periodate oxidation of sucrose and then applied as a crosslinking agent to form a new hydrogel network. A mechanism for the superabsorbent hydrogel formation via reductive N‐alkylation was also suggested. The structure of the hydrogel was confirmed by FTIR spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). It is shown that crosslinking of chitosan can improve its thermal stability. The effects of crosslinker concentration, pH, and inorganic salt on the swelling behavior of the hydrogel were studied. The results indicate that the hydrogel has good pH sensitivity and pH reversible response. The smart hydrogels may have potential applications in the controlled delivery of bioactive agents and for wound‐dressing application © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
A novel PEG macromonomer with methacryloyl and sulfonate group at each chain end was prepared, and new PEG‐based hydrogels were prepared by crosslinking polymerization of this PEG macromonomer in the presence of PEG dimethacrylate. Their swelling properties are measured and compared with those of reference hydrogel from methoxy PEG methacrylate to elucidate the effect of the sulfonate end group. The prepared sulfonated PEG hydrogels exhibited water absorbency in the range of 19 ~ 42 g water/g dry‐gel depending on the composition. These hydrogels with anionic sulfonate group showed swelling behavior varying with salt type, concentration, and also with pH of aqueous solution. The morphology of the sulfonated PEG gels by SEM showed irregular porous network structure varying with the composition. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 56–61, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号