首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The main aims of the work reported here were to synthesize and characterize a new 2,2′‐ethylidene‐bis(4,6‐di‐tert‐butylphenol) (EDBPH2)‐based bimetal yttrium complex, Y(EDBP)2(DME)Na(DME)3 (1c; where DME is ethylene glycol dimethyl ether), which was employed as an efficient initiator for the ring‐opening polymerization of ε‐caprolactone (ε‐CL). From single‐crystal X‐ray diffraction, the solid structure of this new bimetal initiator was well established. Experimental results show that 1c initiates the ring‐opening polymerization of ε‐CL to afford poly(ε‐CL) with a narrow molecular weight distribution (Mw/Mn = 1.09–1.36, 65 °C). Based on an in situ NMR study, a plausible coordination–insertion mechanism is then proposed. The bimetal complex 1c can be used as an initiator for the ring‐opening polymerization of ε‐CL with some living characteristics. A study of the mechanism reveals that DME displacement in 1c by ε‐CL is involved in the initiation process and the propagation may proceed through three pathways by Na? O insertion or Y? O insertion. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
Lanthanide metal (II) 2,6‐di‐tert‐butylphenoxide complexes (ArO)2Ln(THF)3 (Ln = Sm 1 , Yb 2 ) alone have been developed to catalyze the ring‐opening polymerization of trimethylenecarbonate (TMC) and random copolymerization of TMC and ε‐caprolactone (ε‐CL) for the first time. The influence of reaction conditions, such as initiator, initiator concentration, polymerization temperature, and polymerization time, on monomer conversion, molecular weight, and molecular weight distribution of the resulting PTMC was investigated. It was found that the divalent complex 1 showed higher activity for the polymerization of TMC than complex 2 . The random structure and thermal behavior of the copolymers P(TMC‐co‐CL) have been characterized by 1H NMR, 13C NMR, GPC, and DSC analysis. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
A strategy is introduced for the synthesis of polyethylene‐block‐poly(ε‐caprolactone) block copolymers by a combination of coordination polymerization and ring‐opening polymerization. First, end‐hydroxylated polyethylene (PE‐OH) was prepared with a one‐step process through ethylene/3‐buten‐1‐ol copolymerization catalyzed by a vanadium(III) complex bearing a bidentate [N,O] ligand ([PhN?C(CH3)CHC(Ph)O]VCl2(THF)2). The PE‐OH was then used as macroinitiator for ring‐opening polymerization of ε‐caprolactone, leading to the desired nonpolar/polar diblock copolymers. The block structure was confirmed by spectral analysis using 1H NMR, gel permeation chromatography and differential scanning calorimetry. The unusual topologies of the model copolymers will establish a fundamental understanding for structure–property correlations, e.g. compatibilization, of polymer blends and surface and interface modification of other polymers. © 2014 Society of Chemical Industry  相似文献   

4.
A germyl‐bridged lanthanocene chloride, Me2Ge(tBu‐C5H3)2LnCl (Ln = Nd; (Cat‐ Nd ), was prepared and successfully used as single catalyst to initiate the ring‐opening polymerization of ε‐caprolactone (ε‐CL) for the first time. Under mild conditions (60°C,[ε‐CL]/[Ln] = 200, 4 h), Cat‐ Nd efficiently catalyzes the polymerization of ε‐CL, giving poly(ε‐caprolactone) (PCL) with high molecular weight (MW) (>2.5 × 104) in high yield (>95%). The effects of molar ratio of [ε‐CL]/Cat‐Nd, polymerization temperature and time, as well as solvent were determined in detail. When the polymerization is carried out in bulk or in petroleum ether, it gives PCL with higher MW and perfect conversion (100%). The higher catalytic activity of this neodymocene chloride could be ascribed to the bigger atom in the bridge of bridged ring ligands. Some activators, such as NaBPh4, KBH4, AlEt3, and Al(i‐Bu)3, can promote the polymerization of ε‐CL by Cat‐ Nd, which leads to an increase both in the polymerization conversion and in the MW of PCL. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci 123: 1212–1217, 2012  相似文献   

5.
The ring‐opening polymerization of ε‐caprolactone initiated with a divalent samarium bis(phosphido) complex [Sm(PPh2)2] is reported. The polymerization proceeded under mild reaction conditions and resulted in polyesters with number‐average molecular weights of 8.2 × 103 to 12.5 × 103. The yield and molecular weight of poly(ε‐caprolactone)s were dependent on the experimental parameters, such as the monomer/initiator molar ratio, the monomer concentration, the reaction temperature, and the polymerization time. The obtained polymers were characterized with Fourier transform infrared, NMR, gel permeation chromatography, and differential scanning calorimetry. On the basis of an end‐group analysis of low‐molecular‐weight polymers by NMR spectroscopy, a coordination–insertion mechanism is proposed for the polymerization. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1558–1564, 2005  相似文献   

6.
Grafting of poly(ε‐caprolactone) (PCL) and poly(lactide) (PLA) chains on poly(vinyl alcohol) backbone (PVA degree of hydrolysis 99%) was investigated using MgH2 environmental catalyst and melt‐grown ring‐opening polymerization (ROP) of ε‐caprolactone (CL) and L ‐lactide (LA), that avoiding undesirable toxic catalyst and solvent. The ability of MgH2 as catalyst as well as yield of reaction were discussed according to various PVA/CL/MgH2 and PVA/LA/MgH2 ratio. PVA‐g‐PCL and PVA‐g‐PLA were characterized by 1H‐ and 13C‐NMR, DSC, SEC, IR. For graft copolymers easily soluble in tetrahydrofuran (THF) or chloroform, wettability and surface energy of cast film varied in relation with the length and number of hydrophobic chains. Aqueous solution of micelle‐like particles was realized by dissolution in THF then addition of water. Critical micelle concentration (CMC) decreased with hydrophobic chains. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Triphenylamine‐based oligomers and polymers with linear, hyperbranched, star‐shaped or dendrimer architectures have been synthesized and studied due to their interesting electro‐optical properties. In many cases insoluble materials are obtained. In this study, we report the synthesis of grafted polytriphenylamine by chemical and electrochemical polymerization of triphenylamine‐end‐functionalized poly(ε‐caprolactone). Functionalized ε‐caprolactone oligomers were obtained by ring‐opening polymerization of ε‐caprolactone initiated by 4‐hydroxymethyltriphenylamine/stannous octanoate (tin 2‐ethylhexanoate). The ring‐opening polymerization of ε‐caprolactone using 4‐hydroxymethyltriphenylamine/stannous octanoate as initiating system provided ε‐caprolactone oligomers, with well‐defined molecular weights, containing a triphenylamine terminal group. Chemical and electrochemical coupling oxidation of the triphenylamine ends allowed the formulation of polyarylamines with ε‐caprolactone oligomers as grafts. Graft copolymers with an aryleneamine backbone and short poly(ε‐caprolactone) grafts were obtained by (electro)chemical oxidation of oligomers containing triphenylamine terminal groups. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
Biodegradable poly(ε‐caprolactone) (PCL) was formed on benzylic hydroxyl‐functionalized Wang resin surface by surface‐initiated ring‐opening polymerization (SI‐ROP). The SI‐ROP of ε‐caprolactone was achieved first by treating Wang resin with Tin(II) 2‐ethylhexanoate [Sn(Oct)2] to form Tin(II) complex, and then followed by polymerization of ε‐caprolactone in anhydrous toluene at 60°C. Thus, the polymer‐grafted Wang resin was characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), optical microscopy (OM), and field‐emission scanning electron microscopy (FE‐SEM). The FTIR spectroscopic analysis of polymer‐grafted Wang resin (Wang‐g‐PCL) reveals the formation of ester linkage between PCL and hydroxyl‐terminated Wang resin. The DSC thermogram shows melting peak corresponding to PCL polymer on Wang resin surface. Thermogravimetric investigation shows increase in PCL content on the Wang resin surface in terms of percentage of weight loss with increase in reaction time. The formation of polymeric layers on the Wang resin surface can be directly visualized from OM and SEM images. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
2,5‐Dibromo‐1,4‐(dihydroxymethyl)benzene was used as initiator in ring‐opening polymerization of ε‐caprolactone in the presence of stannous octoate (Sn(Oct)2) catalyst. The resulting poly(ε‐caprolactone) (PCL) macromonomer, with a central 2,5‐dibromo‐1,4‐diphenylene group, was used in combination with 1,4‐dibromo‐2,5‐dimethylbenzene for a Suzuki coupling in the presence of Pd(PPh3)4 as catalyst or using the system NiCl2/bpy/PPh3/Zn for a Yamamoto‐type polymerization. The poly(p‐phenylenes) (PPP) obtained, with PCL side chains, have solubility properties similar to those of the starting macromonomer, ie soluble in common organic solvents at room temperature. The new polymers were characterized by 1H and 13C NMR and UV spectroscopy and also by GPC measurements. The thermal behaviour of the precursor PCL macromonomer and the final poly(p‐phenylene)‐graft‐poly(ε‐caprolactone) copolymers were investigated by thermogravimetric analysis and differential scanning calorimetry analyses and compared. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
An in situ–generated tetrafunctional samarium enolate from the reduction of 1,1,1,1‐tetra(2‐bromoisobutyryloxymethyl)methane with divalent samarium complexes [Sm(PPh2)2 and SmI2] in tetrahydrofuran has proven to initiate the ring‐opening polymerization of ?‐caprolactone (CL) giving star‐shaped aliphatic polyesters. The polymerization proceeded with quantitative conversions at room temperature in 2 h and exhibited good controllability of the molecular weight of polymer. The resulting four‐armed poly(?‐caprolactone) (PCL) was fractionated, and the dilute‐solution properties of the fractions were studied in tetrahydrofuran and toluene at 30°C. The Mark–Houwink relations for these solvents were [η] = 2.73 × 10?2Mw0.74 and [η] = 1.97 × 10?2Mw0.75, respectively. In addition, the unperturbed dimensions of the star‐shaped PCL systems were also evaluated, and a significant solvent effect was observed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 175–182, 2006  相似文献   

11.
Poly ε‐caprolactone‐polystyrene block‐copolymers (PCL‐b‐PSt) were synthesized using a modified titanium catalyst as the dual initiator. Alcoholysis of Ti(OPr)4 by 4‐hydroxy 2,2,6,6 tetramethyl piperidinyl‐1‐oxyl (HO‐TEMPO) gave a bifunctional initiator Ti(OTEMPO)4. Poly ε‐caprolactone prepolymer end‐capped with the nitroxide group was first prepared by ring opening polymerization of ε‐caprolactone with this initiator at high conversion. The nitroxide‐end‐capped structure and molar mass (Mn) of the polymers were demonstrated by typical UV absorption band. This analytical technique indicates a near‐quantitative nitroxide functionality and a Mn in good agreement with size exclusion chromatography (SEC) ones. This polyester prepolymer was used to further initiate the radical polymerization with styrene and reach the block copolymers (PCL‐b‐PSt). All the prepolymers and block copolymers were characterized by SEC and NMR spectroscopy. Additionally, the preparation of star polymers bearing two kinds of arms (PCL and PSt) was envisaged and a preliminary result was given. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
In this study, biodegradable blends of poly(ε‐caprolactone) (PCL) and poly(N‐vinylpyrrolidone) (PVP) were prepared by a new strategy in the following steps: (1) free radical polymerization of N‐vinyl‐2‐pyrrolidone (NVP) in ε‐caprolactone (CL); (2) ring‐opening polymerization of ε‐caprolactone in the presence of PVP to obtain the target blends. The structure of the blends was confirmed by FTIR and 1H NMR, and the molecular weight of PCL and PVP were determined by GPC. SEM study revealed that this polymerization method could decrease the disperse phase size and improve the interphase when compared with solution‐blending method. The phase inversion occurred when PVP content was 15–20 wt %. Subsequently, the PCL sphere dispersed in PVP matrix and its size decreased with the increase of PVP content. The contact angle results showed that PVP has a profound effect on hydrophilic properties of PCL/PVP blends. PCL/PVP blends are believed to be promising for drug delivery, cell therapy, and other biomedical applications. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Polystyrene terminated with benzyl alcohol units was employed as a macroinitiator for ring‐opening polymerization of ε‐caprolactone and L ‐lactide to yield AB‐ and ABC‐type block copolymers. Even though there are many reports on the diblock copolymers of poly(styrene‐block‐lactide) and poly(styrene‐block‐lactone), this is the first report on the poly(styrene‐block‐lactone‐block‐lactide) triblock copolymer consisting of two semicrystalline and degradable segments. The triblock copolymers exhibited twin melting behavior in differential scanning calorimetry (DSC) analysis with thermal transitions corresponding to each of the lactone and lactide blocks. The block derived from ε‐caprolactone also showed crystallization transitions upon cooling from the melt. In the DSC analysis, one of the triblock copolymers showed an exothermic transition well above the melting temperature upon cooling. Thermogravimetric analysis of these block copolymers showed a two‐step degradation curve for the diblock copolymer and a three‐step degradation for the triblock copolymer with each of the degradation steps associated with each segment of the block copolymers. The present study shows that it is possible to make pure triblock copolymers with two semicrystalline segments which also consist of degradable blocks. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
Dibutylamine‐terminated ε‐caprolactone oligomers (CLOs: CLOL, CLOM, and CLOH) with number–averaged molecular weight (Mn), 500, 1300, and 2200, respectively, were synthesized by the ring‐opening polymerization of ε‐caprolactone initiated by 2‐(dibutylamino)ethanol in the presence of tin(II) 2‐ethylhexanoate. Nanocomposites based on poly(ε‐caploractone) (PCL) and the caprolactone oligomer‐treated montmorillonites (CLO‐Ms: CLOL‐M, CLOM‐M, and CLOH‐M) were prepared by melt intercalation method. The XRD and TEM analyses of the PCL composites revealed that the extent of exfoliation of the clay platelets increased with increasing molecular weight of the used CLOs. Tensile strength and modulus of the PCL/CLO‐M composites increased with increasing molecular weight of the CLO and increasing inorganic content. The tensile modulus of the PCL/CLOH‐M nanocomposite with inorganic content 5.0 wt % was three times higher than that of control PCL. Among the PCL/CLO‐M composites, the PCL/CLOM‐M composite had the highest crystallization temperature and melting temperature. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
Polymerization of acrylonitrile was carried out using yttrium tris(2,6‐di‐tert‐butyl 4‐methyl‐phenolate) (Y(OAr)3) as single component catalyst for the first time. The effects of concentrations of the monomer and catalyst, kinds of rare earth element and solvent, as well as temperature and polymerization time were investigated. The overall activation energy of polymerization in n‐hexane and THF mixture is 18.3 kJ mol?1. Polyacrylonitriles (PANs) obtained by using Y(OAr)3 in n‐hexane and THF mixture at 50 °C are predominantly atactic, while yellow PANs obtained in DMF under the same conditions have a syndiotactic‐rich configuration (>50%), and their highly branched and/or cyclized structures have also been found. © 2002 Society of Chemical Industry  相似文献   

16.
BACKGROUND: Biodegradable block copolymers have attracted particular attention in both fundamental and applied research because of their unique chain architecture, biodegradability and biocompatibility. Hence, biodegradable poly[((R )‐3 ‐hydroxybutyrate)‐block‐(D ,L ‐lactide)‐block‐(ε‐caprolactone)] (PHB‐PLA‐PCL) triblock copolymers were synthesized, characterized and evaluated for their biocompatibility. RESULTS: The results from nuclear magnetic resonance spectroscopy, gel permeation chromatography and thermogravimetric analysis showed that the novel triblock copolymers were successfully synthesized. Differential scanning calorimetry and wide‐angle X‐ray diffraction showed that the crystallinity of PHB in the copolymers decreased compared with methyl‐PHB (LMPHB) oligomer precursor. Blood compatibility experiments showed that the blood coagulation time became longer accompanied by a reduced number of platelets adhering to films of the copolymers with decreasing PHB content in the triblocks. Murine osteoblast MC3T3‐E1 cells cultured on the triblock copolymer films spread and proliferated significantly better compared with their growth on homopolymers of PHB, PLA and PCL, respectively. CONCLUSION: For the first time, PHB‐PLA‐PCL triblock copolymers were synthesized using low molecular weight LMPHB oligomer as the macroinitiator through ring‐opening polymerization with D ,L ‐lactide and ε‐caprolactone. The triblock copolymers exhibited flexible properties with good biocompatibility; they could be developed into promising biomedical materials for in vivo applications. Copyright © 2008 Society of Chemical Industry  相似文献   

17.
This article presents the ring‐opening polymerization of ε‐caprolactone (ε‐CL) from PP film modified with an initiator layer composed of ? OSn(Oct) groups. This method consists of two steps: (1) Sn(Oct)2 exchanged with the hydroxyl groups on the surface of PP film, forming the ? OSn(Oct) groups bonded on the surface; (2) surface‐initiated ring‐opening polymerization of ε‐CL with the ? OSn(Oct) groups. The initiator layer is characterized by attenuated total reflectance‐Fourier transform infrared (ATR‐FTIR), contact angles, and X‐ray photoelectron spectroscopy (XPS). The growth of PCL chains from the initiator layer through ring‐opening polymerization is successfully achieved. ATR‐FTIR, XPS, and scanning electron microscope (SEM) are also used to characterize the grafted film. XPS results reveal that the PCL chains cover the surface of PP film after 4 h. The SEM images reveal that the PCL chain clusters grow into regular spheroidal particles, which can be changed into other different morphology by treated with different solvents. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
Combination of the organic–inorganic hybrid such as silsesquioxane with ε‐caprolactone will lead to materials expected to be environmentally friendly and applicable to biomedical usages. A ladder‐like poly(phenyl silsesquioxane) based hybrid star‐shaped copolymer of ε‐caprolactone was prepared by ring opening polymerization of ε‐caprolactone catalyzed by Sn(Oct)2 with hydroxyl terminated ladder‐like poly(phenyl silsesquioxane) as initiator. The copolymers were characterized by proton nuclear magnetic resonance (1H‐NMR), silicon nuclear magnetic resonance (29Si‐NMR), Fourier‐transform infrared spectrometer (FT‐IR), size exclusion chromatography (SEC), thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC) in detail. Furthermore, the enzymatic degradation property of the copolymers was also investigated. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42335.  相似文献   

19.
Multi‐walled carbon nanotubes (MWNTs) were covalently functionalized with poly(ε‐caprolactone) (PCL) using click chemistry. First, chlorine moiety‐containing PCL was synthesized by the copolymerization of α‐chloro‐ε‐caprolactone with ε‐caprolactone monomer using ring opening polymerization, and further converted to azide moiety‐containing PCL. The alkyne‐functionalized MWNTs were prepared with the treatment of p‐amino propargyl ether using a solvent free diazotization procedure. The covalent functionalization of alkyne‐derived MWNTs with azide moiety‐containing PCL was accomplished using Cu(I)‐catalyzed [3+2] Huisgen dipolar cycloaddition click chemistry. The PCL‐functionalization of MWNTs was confirmed by the measurements of Fourier transform infra‐red, NMR, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Two series of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) triblock copolymers were prepared by the ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) and dibutylmagnesium in 1,4‐dioxane solution at 70°C. The triblock structure and molecular weight of the copolymers were analyzed and confirmed by 1H NMR, 13C NMR, FTIR, and gel permeation chromatography. The crystallization and thermal properties of the copolymers were investigated by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). The results illustrated that the crystallization and melting behaviors of the copolymers were depended on the copolymer composition and the relative length of each block in copolymers. Crystallization exothermal peaks (Tc) and melting endothermic peaks (Tm) of PEG block were significantly influenced by the relative length of PCL blocks, due to the hindrance of the lateral PCL blocks. With increasing of the length of PCL blocks, the diffraction and the melting peak of PEG block disappeared gradually in the WAXD patterns and DSC curves, respectively. In contrast, the crystallization of PCL blocks was not suppressed by the middle PEG block. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号