首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, the design of a broadband branch‐line coupler (BLC) with reduced size and suppressed harmonic passband response is presented. The proposed approach can be used to replace the low impedance λ/4 lines of the conventional BLC by an equivalent structure almost λ/12 in length. The main advantage of the proposed BLC is that, it has approximately the same bandwidth as that of a conventional BLC. A prototype broadband coupler having fractional bandwidth >50% at 1.1 GHz and of size less than one third of a conventional three‐section wideband BLC topology is realized. In addition, at least 20 dB suppression of up to fourth harmonics is achieved. © 2010 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2011.  相似文献   

2.
The wideband bandpass filtering branch‐line balun with high isolation is presented in this paper. The proposed balun can be designed for wideband performances by choosing a proper characteristics impedance of input vertical transmission line and odd‐mode impedance of parallel‐coupled lines. The proposed balun was designed at a center frequency (f0) of 3.5 GHz for validation. The measured results are in good agreement with the simulations. The measured power divisions are ?3.31 dB and ?3.24 dB at f0 and ?3 ± 0.17 dB within the bandwidth of 0.95 GHz (3 GHz to 3.95 GHz). The input return loss of 24.09 is measured at f0 and higher than 20 dB over the same bandwidth. Moreover, the measured output losses are better than 11 dB within a wide bandwidth. The isolation between output ports is 20.32 dB at f0 and higher than 13.2 dB for a broad bandwidth from 1 GHz to 10 GHz. The phase difference and magnitude imbalance between two output ports are 180° ± 4.5° and ± 0.95 dB, respectively, for the bandwidth of 0.95 GHz.  相似文献   

3.
This work discusses simulation‐driven design of miniaturized wideband branch‐line couplers with a variable topology. Size reduction is enabled here by replacing uniform transmission lines of the original coupler with slow‐wave structures in the form of cascaded compact cells and meander lines. The primary goal is to determine a number of cells in the cascade and particular cell dimensions for which the minimum size of the coupler as well as its required operating conditions are ensured. To this end, we employ a surrogate‐assisted technique involving a trust‐region gradient search framework. Computational efficiency of the design process stems from estimating the Jacobian of circuit responses at the level of a low‐fidelity model of the cascade. The latter is composed in a circuit simulator from duplicated EM‐evaluated data blocks of a single cell and is well correlated with the corresponding high‐fidelity model. The key advantage of this work is the utilization of a reconfigurable, cheap, and well‐aligned low‐fidelity model. The proposed approach is demonstrated through design of a minimum‐size two‐section branch‐line coupler with quasi‐periodic dumbbell‐shaped cells and meander lines. Excellent circuit performance as well as its small size showcase the reliability and usefulness of the presented method. Experimental verification is also provided.  相似文献   

4.
By using short‐circuited Composite Right/Left‐Handed Transmission Lines as loading stubs, and Purely Right‐Handed Artificial Transmission Lines, a Dual‐Band Branch‐Line coupler is presented. The adoption of such technologies adds degrees of freedom with respect to other already proposed design techniques, thus allowing the development of a very compact device, and a larger flexibility in the choice of the two operating frequencies and corresponding bandwidths. © 2007 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2008.  相似文献   

5.
This article presents a compact model to reduce the physical size and increase the frequency ratio between the second and first resonance frequencies of a dual‐function stepped‐impedance‐stub (SIS) line, which was subsequently employed in the realization of dual‐band branch‐line couplers. The proposed model comprises of a loaded spiral T‐shaped SIS that reduces the size of a conventional SIS line as well as improving its frequency ratio. The proposed model behaves exactly similar to the recently developed dual‐band resonators with the advantage of size reduction of ~35% as well as having a wide range of realizable frequency ratios between 1.4 and 3.7 compared to 1.7–2.7 and 1.8–2.3 for the conventional SIS and T‐shaped transmission‐lines, respectively. Dual‐narrowband and wideband branch‐line couplers were developed based on the spiral T‐shaped SIS lines. The dual‐wideband device's bandwidth was enhanced by 2.7% accompanied by a size reduction of 58.6% in comparison with the conventional dual‐wideband couplers operating at the same frequencies. The theoretical results were verified by measurement. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2011.  相似文献   

6.
In this article, the design approach, the implementation, and experimental results of multiband branch‐line couplers operating at arbitrary frequencies are presented. The conventional branch‐line coupler structure is adapted to multiband operation by shunting its four ports with multiband reactive networks. The performance of the proposed multiband couplers is theoretically analyzed and optimized through the even‐odd mode circuit analysis. Dual‐band (2.4–3.5 GHz), triple‐band (1.5–2.4–4.2 GHz), and quad‐band (1.5–2.4–3.5 GHz) microstrip branch‐line couplers have been realized and tested to verify the design method. The good experimental results (input return loss greater than 15 dB and amplitude imbalance lower than 0.7 dB) show excellent agreement with theoretical and simulated ones, thus validating the proposed approach. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:117–129, 2014.  相似文献   

7.
A novel compact balun‐diplexer applying new interdigital line resonators (ILRs) is presented in this article. It is found that the proposed ILR can not only reduce circuit size and but also realize high common mode rejection in differential mode operation frequency. By properly converting the symmetric four‐port balanced bandpass filter (BPF) to a three‐port device, a balun BPF with high selectivity and compact size are accomplished using ILRs. Then, the balun‐diplexer can be realized by combining two well‐designed balun filters with two 50 Ω transmission lines. The demonstrated balun‐diplexer with operation at 1.8 and 2.45 GHz have been designed, fabricated, and measured. Excellent performances have been observed. Specifically, 0.4 dB in‐band amplitude error, 1.8 in‐band phase error, more than 50 dB selectivity and 45 dB isolation are obtained. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:485–489, 2015.  相似文献   

8.
This article presents a novel methodology for the design of transmission line‐based dual‐band branch‐line hybrid with distinct power division over any two specified frequencies. These distinct power divisions at specified frequencies are achieved while keeping the quadrature relation intact at both the frequencies. To demonstrate the effectiveness of the proposed technique, a prototype of dual‐band uneven branch‐line hybrid operating at 1960 and 3500 MHz has been designed for use in Wideband Code Division Multiple Access (WCDMA) and Worldwide Interoperability for Microwave Access (WiMax) applications. The designed hybrid possesses equal power division in the WCDMA band and 3‐dB unequal power division in the WiMax band. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2013.  相似文献   

9.
Half‐hexagonal microstrip antenna (H‐HMSA) is a compact version of HMSA, as it resonates at the same fundamental mode frequency. In this article, a compact configuration of a single layer, broadband gap‐coupled H‐HMSA has been proposed. Gap‐coupled H‐HMSA is fed indirectly by a λ/2 microstrip‐line resonator. Broad bandwidth (BW) is achieved with an effective use of resonance introduced by λ/2 resonator and gap‐coupled half‐hexagonal radiating patches. A peak gain of 7.07 dBi and measured BW (S11 ≤ ?10 dB) of 11.5% at the center frequency of 5.2 GHz have been achieved, which occupies a small volume of 0.023 λ03 including the ground plane. The radiation patterns remain in the broadside direction throughout the return loss BW. Simulated results of the proposed antenna configuration are experimentally validated with good agreement.  相似文献   

10.
Design of miniaturized microwave components is a challenging task. On one hand, due to considerable electromagnetic (EM) cross‐couplings in highly compressed layouts full‐wave EM analysis is necessary for accurate evaluation of the structure performance. Conversely, high‐fidelity EM simulation is computationally expensive so that automated determination of the structure dimensions may be prohibitive when using conventional numerical optimization routines. In this article, computationally efficient simulation‐driven design of a miniaturized dual‐band microstrip branch‐line coupler is presented. The optimization methodology relies on suitably extracted features of a highly nonlinear response of the coupler structure under design. The design objectives are formulated in terms of the feature point locations, and the optimization is carried out iteratively with the linear model of the features utilized as a fast predictor. The entire process is embedded in the trust‐region framework as convergence safeguard. Owing to only slightly nonlinear dependence of the features on the geometry parameters of the circuit at hand, the optimized design satisfying prescribed performance requirements is obtained at the low computational cost of only 24 high‐fidelity EM simulations of the structure. Experimental validation of the fabricated coupler prototype is also provided. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:13–20, 2016.  相似文献   

11.
This article presents a new analytical method to predict crosstalk of a homogeneous terminated two microstrip coupled lines over a ground plane using transmission line theory. The derived formula is frequency and location dependent, which can be used to quickly estimate the crosstalk of a coupled line. Also, the effect of the geometrical parameters of the lines and load are included in the derived formula. Presented method can be used for the other types of coupled lines including lossy or lossless lines. To verify the accuracy of the introduced method, a few microstrip coupled line structures with different geometrical parameters are considered numerically and experimentally. The results of crosstalk based on the proposed analytical methods, simulation study using high frequency structure simulator and those obtained by measurements are reported and compared with each other. It is shown that our proposed method accurately estimates the amount of crosstalk for a two microstrip coupled lines.  相似文献   

12.
In this work, new trace configurations using stepped impedance elements and open‐circuited stubs to reduce far‐end crosstalk in printed circuit board (PCB) interconnects are introduced. The goal of this study is to reduce crosstalk without using additional PCB components in the design. Specifically, we use stepped impedance elements and open‐circuited stubs of uniform length and width on the victim traces to suppress high‐frequency electromagnetic interference and to equalize propagation delays or capacitive and inductive couplings between PCB traces. The overall design is very similar to the usual low‐pass filter configurations, which are difficult to implement in the prototype testing. The proposed approach shows remarkably better results when compared with conventional intervening guard trace schemes. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2011.  相似文献   

13.
The purpose of this article is to provide a comprehensive investigation on the resonance phenomenon of microstrip line coupled complementary split‐ring resonator (CSRR) with different orientation and relative size. It is shown that when the relative size of the CSRR is smaller than the host line, the CSRR with its slit oriented orthogonal to the line axis will not excite effectively and show weak resonance behavior. However, when the slit is positioned along the line axis, the cross‐polarization effect comes into play, which excites the CSRR through the mixed coupling. To ensure the correctness, several numerical simulations are carried out for different substrate height and relative permittivity. Finally, a prototype is fabricated and measured for the experimental validation.  相似文献   

14.
A circularly polarized printed antenna using an asymmetric open‐slot is designed in this paper. The presented antenna consists of conducting ground plane with open wide‐slot, fed electromagnetically by a microstrip feedline. The slot and feedline are positioned at the edge of the ground plane and substrate, hence making the antenna asymmetric. The measured results show that the |S11| < ?10 dB impedance bandwidth is 125% (3.2‐14 GHz) and the broadband axial ratio bandwidth is 61% (3.2‐6 GHz). The antenna is very simple and has a small size of 25 mm × 25 mm, making it attractive for compact wireless WLAN, ISM, WiMAX, and C‐band applications.  相似文献   

15.
In this article, two novel topologies of compact‐size dual‐band single‐ended‐to‐balanced power dividers that are loaded with open‐ and short‐ended stubs are presented. Quarter‐wavelength open‐ended stubs and half‐wavelength short‐ended stubs are respectively exploited in the proposed dual‐band power‐divider configurations to incorporate the dual‐band functionality into them for flexibly‐adjustable dual‐frequency‐ratio specifications. Each engineered five‐port power‐divider circuit features high in‐band input/output power‐matching levels, high in‐band power‐isolation levels between the two differential‐mode outputs, and high common‐mode‐rejection levels in a broad spectral range. Two microstrip prototypes designed at 0.9/1.8 GHz (GSM bands) and 1.57/2.45 GHz (GPS and WLAN bands) are constructed and characterized for experimental‐demonstration purposes.  相似文献   

16.
A simple via‐hole coupled oversized microstrip line filter is proposed and demonstrated in this article. The via‐hole in this case works as an inductor coupling structure whereas the oversized microstrip line resonator has a higher Q‐factor than its conventional counterpart. Full‐wave‐based circuit models of a series of via‐holes embedded in the oversized microstrip line are extracted by using our proposed numerical calibration technique combined with a commercial method‐of‐moments simulator. A simple 3‐pole via‐hole coupled oversized microstrip line filter is designed and fabricated on the basis of the extracted circuit models of via‐holes. Measured results show that the demonstrated filter has a center frequency of 1.853 GHz, a bandwidth of 6.98% and an insertion loss of 1.36 dB. Measured results of the fabricated filter sample are in agreement with its simulated results, showing a good performance of the proposed scheme. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2008.  相似文献   

17.
In this article, a wideband and spurious‐suppressed differential bandpass filter based on strip‐loaded slot‐line structure is presented. By means of the differential microstrip‐slot‐line‐microstrip transition, the proposed filter has a wideband bandpass filtering response. Simultaneously, the utilization of the strip‐loaded slot‐line extends its upper stop‐band. The proposed bandpass filter has wider upper‐stopband, wideband bandpass response, and intrinsic high common‐mode (CM) suppression. To verify the design concept, one filter example has been designed, fabricated, and measured. It has a differential‐mode (DM) 3‐dB fractional bandwidth of 157% with a low 0.82 dB minimum insertion loss. What's more, it shows a very wide 20 dB DM stop‐band bandwidth of 6.5 f0d. The experienced results are in good agreement with the theoretical and simulated results.  相似文献   

18.
This article proposes a microstrip dual‐band bandpass filter that uses parallel‐connected open‐loop ring resonators. Compared to many microstrip dual‐band filters, the advantages of using microstrip open‐loop ring resonators are easy calculation (half‐guided‐wavelength), easy fabrication (equal width for all 50‐Ω lines and without grounding holes), and direct connection to external feed lines (reducing insertion loss caused by gap couplings). Another advantage of the filter is an asymmetrical feed on the ring resonator that provides sharp rejections at its adjacent bands. The input and output matches of resonators to the external feed lines are derived using a simple transmission‐line theory. The results of the derivation provide a simple design rule for filter designers. Simulated and measured results are presented with good agreement. The filter has minimum insertion loss of 1.25 dB at 1.85 GHz and 1.6 dB at 2.33 GHz. The 3‐dB fractional bandwidths are 5.9% for the 1.9‐GHz bandpass filter and 4.7% for the 2.4‐GHz bandpass filter, respectively. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2008.  相似文献   

19.
A wideband reflectarray antenna consisting of single‐layer dipole element attached with T‐shaped stubs is proposed. By varying the lengths of the T‐shaped stubs, the unit cell can provide a linear phase curve covering about 420°. Critical design parameters are analyzed to understand its wideband operating mechanism. Using this novel type of unit cells, a 441 element 25° offset‐fed reflectarray with grid spacing of λ/3 at 10 GHz is designed, fabricated, and measured. The experimental results show that the proposed reflectarray can achieve 1‐dB gain bandwidth of 24% and 1.5‐dB gain bandwidth of 37%. In addition, aperture efficiency of 66.6% and cross polarization level of 29 dB are obtained at 10 GHz, respectively.  相似文献   

20.
Design closure of compact microwave components is a challenging problem because of significant electromagnetic (EM) cross‐couplings in densely arranged layouts. A separate issue is a large number of designable parameters resulting from replacement of conventional transmission line sections by compact microstrip resonant cells. This increases complexity of the design optimization problem and requires employment of expensive high‐fidelity EM analysis for reliable performance evaluation of the structure at hand. Consequently, neither conventional numerical optimization algorithms nor interactive approaches (e.g., experience‐driven parameters sweeps) are capable of identifying optimum designs in reasonable timeframes. Here, we discuss application of feature‐based optimization for fast design optimization of dual‐ and multiband compact couplers. On one hand, design of such components is difficult because of multiple objectives (achieving equal power split and good matching and port isolation for all frequency bands of interest). On the other hand, because of well‐defined shapes of the S‐parameter responses for this class of components, feature‐based optimization seems to be well suited to control multiple figures of interest as demonstrated in this work. Two‐level EM modeling is used for further design cost reduction. More importantly, we develop a procedure for automated determination of the low‐fidelity EM model coarseness that allows us to find the fastest possible model that still ensures sufficient correlation with its high‐fidelity counterpart, which is critical for robustness of the optimization process. Our approach is illustrated using two dual‐band compact couplers. Experimental validation is also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号