首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Steroidogenic Acute Regulatory (StAR) protein has been put forth as the rapidly synthesized, cycloheximide-sensitive protein that is required for the transport of cholesterol to the inner mitochondrial membrane and the P450scc enzyme and thereby acutely regulates steroidogenesis in steroidogenic tissues. In this study, several of the factors that may be required for StAR activity were examined using an in vitro system. Lysates from StAR-transfected COS-1 cells were added to mitochondria isolated from MA-10 Leydig tumor cells. Results obtained demonstrated that StAR-containing cell lysate increased steroidogenesis in isolated mitochondria, but failed to do so in the presence of m-CCCP, apyrase, or AMP-PNP, suggesting that StAR function requires ATP hydrolysis as well as an electrochemical gradient for maximal steroidogenic activity.  相似文献   

2.
It has been proposed that the steroidogenic acute regulatory (StAR) protein controls hormone-stimulated steroid production by mediating cholesterol transfer to the mitochondrial inner membrane. This study was conducted to determine the effect of wild-type StAR and several modified forms of StAR on intramitochondrial cholesterol transfer. Forty-seven N-terminal or 28 C-terminal amino acids of the StAR protein were removed, and COS-1 cells were transfected with pCMV vector only, wild-type StAR, N-47, or the C-28 constructs. Lysates from the transfected COS-1 cells were then incubated with mitochondria from MA-10 mouse Leydig tumor cells that were preloaded with [3H]cholesterol. After incubation, mitochondria were collected and fractionated on sucrose gradients into outer membranes, inner membranes, and membrane contact sites, and [3H]cholesterol content was determined in each membrane fraction. Incubation of MA-10 mitochondria with wild-type StAR containing cell lysate resulted in a significant 34.9% increase in [3H]cholesterol content in contact sites and a significant 32.8% increase in inner mitochondrial membranes. Incubations with cell lysate containing N-47 StAR protein also resulted in a 16.4% increase in [3H]cholesterol in contact sites and a significant 26.1% increase in the inner membrane fraction. In contrast, incubation with the C-28 StAR protein had no effect on cholesterol transfer. The cholesterol-transferring activity of the N-47 truncation, in contrast to that of the C-28 mutant, was corroborated when COS-1 cells were cotransfected with F2 vector (containing cytochrome P450 side-chain cleavage enzyme, ferridoxin, and ferridoxin reductase) and either pCMV empty vector or the complementary DNAs of wild-type StAR, N-47 StAR, or C-28 StAR. Pregnenolone production was significantly increased in both wild-type and N-47-transfected cells, whereas that in C-28-transfected cells was similar to the control value. Finally, immunolocalization studies with confocal image and electron microscopy were performed to determine the cellular location of StAR and its truncated forms in transfected COS-1 cells. The results showed that wild-type and most of the C-28 StAR protein were imported into the mitochondria, whereas most of N-47 protein remained in the cytosol. These studies demonstrate a direct effect of StAR protein on cholesterol transfer to the inner mitochondrial membrane, that StAR need not enter the mitochondria to produce this transfer, and the importance of the C-terminus of StAR in this process.  相似文献   

3.
Steroidogenic acute regulatory protein (StAR) facilitates delivery of cholesterol to the inner mitochondrial membranes. StAR is imported into mitochondria and processed to a mature form by cleavage of the N-terminal mitochondrial targeting sequence. We produced His-tagged (His-tag StAR) constructs lacking the N-terminal 62 amino acids that encode the mitochondrial targeting sequence and examined their steroidogenic activity in intact cells and on isolated mitochondria. His-tag StAR proteins stimulated pregnenolone synthesis to the same extent as wild-type StAR when expressed in COS-1 cells transfected with the cholesterol side-chain cleavage system. His-tag StAR was diffusely distributed in the cytoplasm of transfected COS-1 cells, whereas wild-type StAR was localized to mitochondria. There was no evidence at the light or electron microscope levels for selective localization of His-tag StAR protein to mitochondrial membranes. We established an assay system using mitochondria isolated from bovine corpora lutea and purified recombinant His-tag StAR proteins expressed in E. coli. Recombinant His-tag StAR stimulated pregnenolone production in a dose- and time-dependent manner, functioning at nanomolar concentrations. A point mutant of StAR (A218V) that causes lipoid congenital adrenal hyperplasia was incorporated into the His-tag protein. This mutant was steroidogenically inactive in COS-1 cells and on isolated mitochondria. Our observations conclusively document that StAR acts on the outside of mitochondria, independent of mitochondrial import.  相似文献   

4.
MLN64 is a protein that is highly expressed in certain breast carcinomas. The C terminus of MLN64 shares significant homology with the steroidogenic acute regulatory protein (StAR), which plays a key role in steroid hormone biosynthesis by enhancing the intramitochondrial translocation of cholesterol to the cholesterol side-chain cleavage enzyme. We tested the ability of MLN64 to stimulate steroidogenesis by using COS-1 cells cotransfected with plasmids expressing the human cholesterol side-chain cleavage enzyme system and wild-type and mutant MLN64 proteins. Wild-type MLN64 increased pregnenolone secretion in this system 2-fold. The steroidogenic activity of MLN64 was found to reside in the C terminus of the protein, because constructs from which the C-terminal StAR homology domain was deleted had no steroidogenic activity. In contrast, removal of N-terminal sequences increased MLN64's steroidogenesis-enhancing activity. MLN64 mRNA was found in many human tissues, including the placenta and brain, which synthesize steroid hormones but do not express StAR. Western blot analysis revealed the presence of lower molecular weight immunoreactive MLN64 species that contain the C-terminal sequences in human tissues. Homologs of both MLN64 and StAR were identified in Caenorhabditis elegans, indicating that the two proteins are ancient. Mutations that inactivate StAR were correlated with amino acid residues that are identical or similar among StAR and MLN64, indicating that conserved motifs are important for steroidogenic activity. We conclude that MLN64 stimulates steroidogenesis by virtue of its homology to StAR.  相似文献   

5.
In adrenal glomerulosa cells, angiotensin II (Ang II) and potassium stimulate aldosterone synthesis through activation of the calcium messenger system. The rate-limiting step in steroidogenesis is the transfer of cholesterol to the inner mitochondrial membrane. This transfer is believed to depend upon the presence of the steroidogenic acute regulatory (StAR) protein. The aim of this study was 1) to examine the effect of changes in cytosolic free calcium concentration and of Ang II on intramitochondrial cholesterol and 2) to study the distribution of StAR protein in submitochondrial fractions during activation by Ca2+ and Ang II. To this end, freshly prepared bovine zona glomerulosa cells were submitted to a high cytosolic Ca2+ clamp (600 nM) or stimulated with Ang II (10 nM) for 2 h. Mitochondria were isolated and subfractionated into outer membranes, inner membranes (IM), and contact sites (CS). Stimulation of intact cells with Ca2+ or Ang II led to a marked, cycloheximide-sensitive increase in cholesterol in CS (to 143 +/- 3. 2 and 151.1 +/- 18.1% of controls, respectively) and in IM (to 119 +/- 5.1 and 124.5 +/- 6.5% of controls, respectively). Western blot analysis revealed a cycloheximide-sensitive increase in StAR protein in mitochondrial extracts of Ca2+-clamped glomerulosa cells (to 159 +/- 23% of controls). In submitochondrial fractions, there was a selective accumulation of StAR protein in IM following stimulation with Ca2+ (228 +/- 50%). Similarly, Ang II increased StAR protein in IM, and this effect was prevented by cycloheximide. In contrast, neither Ca2+ nor Ang II had any effect on the submitochondrial distribution of cytochrome P450scc and 3beta-hydroxysteroid dehydrogenase isomerase. The intramitochondrial presence of the latter enzyme was further confirmed by immunogold staining in rat adrenal fasciculata cells and by immunoblot analysis in MA-10 mouse testicular Leydig cells. These findings demonstrate that under acute stimulation with Ca2+-mobilizing agents, newly synthesized StAR protein accumulates in IM after transiting through CS. Moreover, our results suggest that the import of StAR protein into IM may be associated with cholesterol transfer, thus promoting precursor supply to the two first enzymes of the steroidogenic cascade within the mitochondria and thereby activating mineralocorticoid synthesis.  相似文献   

6.
Interferon-gamma (IFNgamma) is an immunomodulating cytokine that has profound effects on reproductive function. IFNgamma inhibits steroidogenesis both in vivo and in vitro. The mechanism by which IFNgamma inhibits Leydig cell steroidogenesis remains unclear. In the present study, we evaluated the effect of IFNgamma on the expression and regulation of the steroidogenic acute regulatory protein (StAR) gene in primary cultures of rat Leydig cells. StAR facilitates the efficient production of steroid hormone by regulating the translocation of cholesterol from the outer to the inner mitochondrial membrane, the site of the cytochrome P450 side-chain cleavage (P450scc) enzyme system that converts cholesterol to pregnenolone. IFNgamma inhibited hCG-induced StAR messenger RNA (mRNA) levels in a dose-dependent manner. The addition of IFNgamma in a concentration of 500 U/ml decreased hCG-induced 3.8- and 1.7-kilobase StAR mRNA by 78% and 70%, respectively. IFNgamma also reduced hCG-stimulated P450scc mRNA levels by 69%. The inhibitory effects of IFNgamma on StAR mRNA levels were confirmed by ribonuclease protection assay. As early as 12 h after the addition of IFNgamma, hCG-induced StAR mRNA levels decreased by more than 44%. To evaluate the effects of IFNgamma on StAR protein levels, Western blot analyses were performed. hCG in a concentration of 10 ng/ml increased StAR protein by 5.6-fold. Treatment of Leydig cells with IFNgamma (500 U/ml) decreased hCG-induced StAR protein by 44%. In contrast, interleukin-1 and murine tumor necrosis factor-alpha reduced hCG-induced P450scc mRNA expression without inhibiting StAR mRNA or protein levels. In conclusion, IFNgamma inhibits Leydig cell steroidogenesis by down-regulating StAR gene expression and protein production.  相似文献   

7.
8.
9.
Although the precise mechanism whereby cholesterol is transported across the outer mitochondrial membrane is uncertain, a multimeric receptor complex termed the peripheral-type benzodiazepine receptor (PBR) appears essential for this process. We therefore predicted that adrenal cells at different developmental stages would express PBR coincidentally with the advent of steroidogenesis. Adrenals of neonatal rats demonstrate greatly reduced sensitivity to ACTH that gradually increases after the first 2 weeks of life. Thus, neonates have lower circulating corticosterone levels following exposure to stress. We examined mitochondrial PBR ligand binding activity, immunoreactive (ir) PBR content, and adrenal sensitivity to ACTH in vivo and in vitro. Ontogeny of both mitochondrial PBR ligand binding capacity and irPBR directly paralleled that of ACTH-inducible steroidogenesis in isolated rat adrenal cells and in rats injected with ACTH. In addition, neonatal PBR had approximately 2-fold higher affinity for PK11195, a synthetic ligand that binds with high affinity to PBR. No correlation was observed during neonatal life between ir-steroidogenic acute regulatory (StAR) protein content and steroidogenesis. These results are consistent with the hypothesis that PBR is an absolute prerequisite for adrenocortical steroidogenesis, and suggest that the stress hyporesponsive period of neonatal rats may result from decreased PBR expression. In addition, the higher affinity of neonatal PBR and the relatively high basal expression of StAR protein in neonatal adrenals may partly explain the high constitutive steroidogenesis characteristic of neonatal rat adrenal cells.  相似文献   

10.
Rat ovarian genes induced by the treatment of immature rats with pregnant mare serum gonadotropin (PMSG) were isolated by a subtraction cloning method. Amongst them was obtained a probable rat homologue of steroidogenic acute regulatory protein (StAR), which has been recently identified as a protein that is an acute regulator of the rate limiting transfer of cholesterol from the outer to the inner mitochondrial membrane. Structure of rat StAR was determined by nucleotide sequence analysis. Northern blot analysis revealed that StAR mRNA levels were rapidly and strongly increased by PMSG/hCG but not by FSH. In situ hybridization revealed that the expression of StAR mRNA was strongly induced by PMSG in theca interna cells as well as in corpora lutea. These findings indicate that expression of StAR mRNA is restricted to and induced in the ovarian steroidogenic cell types where cholesterol is used as a substrate for synthesis of steroid hormones.  相似文献   

11.
12.
StAR protein may facilitate rapid transfer of cholesterol from the outer to the inner mitochondrial membrane, the site at which cholesterol is converted to pregnenolone by the cholesterol side chain cleavage complex. We have studied the effect of ACTH treatment on StAR mRNA and protein levels in bovine adrenocortical cells in primary culture. Cells were initially cultured for 3 days after isolation, and then treated with ACTH (10(-8) M) for various times up to 24 hours. Northern analysis of total BAC mRNA, using a [alpha32P]-labelled cDNA probe encoding a 5' region of bovine StAR mRNA, revealed two principal hybridising species of 1.6 and 3.0 kb. Western immunoblot analysis revealed a principal band at 30 kDa. Levels of both StAR mRNA and protein showed an increase at 1 hour, reached a maximum at around 6 hours and declined to basal levels at 24 hours. Cortisol secretion (measured by RIA) showed a similar change over the same period. From these results it appears that StAR mRNA and protein levels in BAC are acutely regulated in concert with ACTH-stimulated cortisol secretion.  相似文献   

13.
The transfer of cholesterol from the outer to the inner mitochondrial membrane, where side-chain cleavage occurs to form pregnenolone, is a crucial event in the regulation of steroidogenesis and recently has been demonstrated to be mediated by steroidogenic acute regulatory protein (StAR). We generated a partial porcine StAR complementary DNA (280 bp) by RT-PCR and used the corresponding antisense riboprobe to quantify the control of StAR gene expression by FSH and insulin-like growth factor I (IGF-I) in hormonally responsive swine granulosa cells, which typically manifest synergistic steroidogenic stimulation by these two dominant intrafollicular regulators. RNase protection assays were implemented to investigate the time course of the actions of FSH (100 ng/ml), IGF-I (100 ng/ml), and FSH plus IGF-I on StAR messenger RNA accumulation in serum-free cultures granulosa cells. Treatment with FSH (1.6-fold) or IGF-I (2.7-fold) alone had a small but consistent stimulatory effect on StAR message accumulation (corrected for 18S ribosomal RNA in each lane) at 48 h, whereas only IGF-I stimulated StAR protein expression (at least 6-fold as assessed by Western blot). Notably, the combined effect of FSH plus IGF-I was strongly synergistic and already significant by 24 h and maximal at 48 h (P < 0.001). Protein kinase A agonist, 8-bromoadenosine 3',5'-cAMP (8-bromo-cAMP) (1 mM) alone elicited a 3.5-fold increase in StAR message and more than 3.7-fold increase in StAR protein expression by 48 h. The combination of IGF-I and FSH or 8-bromo-cAMP evoked a 26- to 40-fold (P < 0.001) synergistic rise in StAR message accumulation. StAR protein also showed a similar synergistic pattern of expression driven by IGF-I and FSH or 8-bromo-cAMP, namely a greater than 56- to 60-fold increase. In summary, two distinct first messenger regulatory molecules, FSH and IGF-I, interact synergistically to induce amplification of StAR messenger RNA and protein expression in serum-free monolayer cultures of immature (swine) granulosa cells.  相似文献   

14.
The purpose of this study was to evaluate the effects of acute (a single injection) and chronic stimulation (twice daily injection for 9 days) by ACTH on changes occurring in the temporal expression of steroidogenic enzymes in the rat adrenal in vivo. Under acute ACTH stimulation, the level of steroidogenic acute regulatory protein (StAR) messenger RNA (mRNA) was increased within 0.5 h in both zona glomerulosa (ZG) and zona fasciculata-reticularis (ZFR), with maximal increases of 220-370% and 300-350% in the ZG and ZFR, respectively. Increases in the levels of StAR protein in homogenates were also found in the ZG (700%) and the ZFR (300%), but were delayed compared with those of their mRNA. Furthermore, the increase in mitochondrial StAR protein was concomitant with that in the homogenate, indicating that the entry of StAR into mitochondria might not be necessary to increase steroidogenesis during the early stimulatory phase. The levels of c-jun, c-fos, junB, and fosB mRNA in ZG and ZFR were also rapidly maximally elevated within 0.5-1 h after ACTH administration and fell to near control levels 5 h posttreatment. The levels of c-jun protein were already increased in both zones at 1 h, reached 200% at 3 h, and remained elevated 5 h post-ACTH treatment. The levels of c-Fos protein were maximally increased by 240% in both zones after 1 h and decreased thereafter to control values at 5 h. Few changes were observed in the adrenal protein contents of cholesterol side-chain cleavage cytochrome P450 (P450scc), cytochrome P450 11beta-hydroxylase (P450C11), cytochrome P450 21-hydroxylase (P450C21), and 3beta-hydroxysteroid dehydrogenase (3betaHSD). Under chronic stimulation by ACTH, we observed elevations in the levels of plasma corticosteroids and changes in the mRNA and protein levels of many adrenal steroidogenic enzymes in both zones. In the ZG, administration of ACTH for 9 days provoked an increase in the level of StAR mRNA (210-270%) and a decrease in the levels of 3betaHSD, cytochrome P450 aldosterone synthase (P450aldo), and AT1 receptor mRNA (by 40%, 70%, and 90%, respectively), whereas the levels of P450scc and P450C21 mRNA did not differ significantly from the control values. Western blotting analysis showed that the adrenal ZG protein levels of StAR and P450scc were increased (150%), 3betaHSD was not changed, and P450C21 was decreased by 70%. In the ZFR, the levels of P450scc and StAR mRNAs were increased (260% and 570-870%, respectively). The levels of 3betaHSD, P450C21, and P450C11 mRNA did not differ from control values in that zone. Western blotting analysis showed that the ZFR protein level of 3betaHSD was not changed, P450scc and P450C21 were decreased by 40% and 60%, respectively, and StAR was increased by 160%. Although c-fos and fosB mRNAs were undetectable after 9 days of chronic ACTH treatment, c-jun mRNA and its protein were still detectable, suggesting a basic role for this protooncogene in maintaining the integrity and function of the adrenal cortex. When dexamethasone was administered to rats for 5 days to inhibit their ACTH secretion, the mRNA levels of many steroidogenic enzymes were decreased, with the exception of StAR, 3betaHSD, and P450aldo. These results confirm the importance of physiological concentrations of ACTH in maintaining normal levels of adrenocortical enzymes and also indicate that in addition to ACTH, other factors are involved in controlling the expression of StAR, 3betaHSD, and P450aldo. In conclusion, we showed that ACTH acutely increases StAR mRNA followed, after a delay, by an increase in the level of StAR protein; this suggests that posttranslational modifications of the StAR precursor occurred during the early stimulatory phase and before the apparent translation of the newly formed mRNA. The rapid induction of protooncogenes suggests their participation in the action of ACTH to stimulate steroidogenesis. (ABSTRACT TRUNCATED)  相似文献   

15.
16.
Exposure to disease or injury often results in impaired reproductive activity accompanied by decreased testosterone levels. After immune activation, the cytokine interleukin 1-beta (IL-1beta) circulates in high concentrations, and its exogenous administration evokes many of the sequelae of immune activation. Previously, we have shown that the administration of this cytokine into the cerebral ventricles blunts hCG-stimulated testosterone secretion. This effect, though time-dependent, occurs before significant elevation of interleukin 6 in the peripheral bloodstream, does not depend on adrenal activation, and/or changes in LH concentrations, leading us to hypothesize a direct connection between the brain and testis. To explore this mechanism further, we isolated testicular tissue from rats treated intracerebroventricularly (icv) with vehicle or IL-1beta 30 or 90 min before they were killed. We found that in vivo cytokine treatment blunted ex vivo testosterone secretion in response to hCG, showing that the mechanism is independent of circulating cytokines. Though hCG binding was moderately reduced by icv IL-1beta in these preparations, the extent of this inhibition did not explain our observations. As the first acutely and hormonally regulated step in the biosynthesis of testosterone is the transfer of cholesterol into the inner mitochondrial membrane, which is mediated by steroidogenic acute regulatory (StAR) protein, we hypothesized that the rapid effects of icv IL-1beta on testicular responsiveness to hCG might be due to reduced levels of StAR. We report here that StAR protein was indeed reduced in Leydig cells isolated from rats treated in vivo with IL-1beta. Furthermore, treatment with a water-permeable form of cholesterol that bypasses the requirement for StAR partially restored hCG-stimulated testosterone secretion from testes isolated from rats treated icv with IL-1beta. Taken together, our data indicate that StAR plays a role in the suppression of testicular function evoked by central administration of IL-1beta.  相似文献   

17.
Apoptosis inhibits steroid biosynthesis, but it is not clear how the Steroidogenic Acute Regulatory (StAR) protein, is affected. To characterize StAR expression during apoptosis, mouse MA-10 Leydig tumor cells were treated with ethane dimethane sulfonate (EDS), an inducer of apoptosis, and the metal ion chelator NNN'N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN), an inducer of cell death. Both chemicals induced cell death and similarly inhibited dbcAMP-stimulated steroidogenesis and accumulation of the 30 kDa form of StAR. Utilizing the dye JC-1, it was found that TPEN and EDS also impaired the mitochondrial electrochemical potential (delta psi). In Sertoli cells, which also express StAR, EDS induced cell death and attenuated StAR expression. We conclude 1) steroidogenesis and accumulation of mature StAR protein are inhibited as a consequence of the induction of apoptosis; 2) reduced levels of StAR may be partially attributed to inhibition of import because of the loss of delta psi; 3) loss of steroidogenesis is probably due to loss of StAR synthesis and disruption of delta psi.  相似文献   

18.
Sterol carrier protein 2 (SCP2) has been implicated in adrenal steroidogenesis by in vitro studies. In order to clarify the clinical significance of SCP2 in human steroidogenesis, we investigated the expression of SCP2 mRNA in various types of adrenocortical tissue and one testis and examined the correlation between the amounts of SCP2 and other values such as the free cholesterol content and the cholesterol side-chain cleavage (SCC) activity in the tissue mitochondria. The types of adrenocortical tissue examined included adrenocortical carcinomas (N = 3), adrenocortical adenomas from patients with Conn's syndrome (N = 3) and from patients with Cushing's syndrome (N = 3), non-functioning adrenocortical adenomas (N = 2) and normal adrenal glands (N = 2). Northern blot hybridization predominantly revealed a 1.8-kb SCP2 mRNA in all tissue specimens examined. The mRNA concentrations of SCP2 in two out of three adrenocortical carcinomas were relatively lower than those in other types of tissue. No other special tendency was observed regarding the mRNA expression levels in various tissue specimens. The mRNA concentrations of SCP2 correlated significantly with mitochondrial contents of free cholesterol (r = 0.67, p < 0.01), but was not correlated with the SCC activities in mitochondria measured by an in vitro enzyme assay. The mitochondrial SCC activities, however, were correlated significantly with the protein levels of mitochondrial P-450 scc determined by a Western blot analysis (r = 0.79, p < 0.01). The significant positive correlation between mRNA concentrations of SCP2 and the mitochondrial content of free cholesterol suggests that the central role of SCP2 in human steroidogenic tissues may be in part a translocation of cytoplasmic free cholesterol to the mitochondria, as demonstrated previously by in vitro studies.  相似文献   

19.
The diazepam-binding inhibitor (DBI) is a 10-kDa highly evolutionarily conserved multifunctional protein. In mammals, one of DBI's functions is in the activation of steroid hormone biosynthesis via binding to a specific outer mitochondrial membrane receptor (benzodiazepine receptor, BZD) and promoting cholesterol transport to the inner membrane. In this work, a multitiered approach was utilized to study the role of this receptor-like activity in ecdysteroidogenesis by larval insect prothoracic glands (PGs). First, both DBI protein and messenger RNA (mRNA) levels were correlated with peak PG ecdysteroid production. In vitro ecdysteroid production was stimulated by the diazepam analogue FGIN 1-27 and inhibited anti-DBI antibodies. The DBI protein was found distributed throughout PG cells, including regions of dense mitochondria, supposed subcellular sites of ecdysteroid synthesis. Finally, a potential mitochondrial BZD receptor in PG cells was demonstrated by photoaffinity labeling. These results suggest an important role for the insect DBI in the stimulation of steroidogenesis by prothoracic glands and indicate that a pathway for cholesterol mobilization leading to the production of steroid hormones appears to be conserved between arthropods and mammals.  相似文献   

20.
Transforming growth factor betas (TGFbetas) constitute a family of dimeric proteins that regulate growth and differentiation of many cell types. TGFbeta1 is also a potent autocrine regulator of adrenocortical steroidogenesis. We have recently shown that in primary cultures of bovine fasciculo-reticularis cells, the main target of TGFbeta is the steroidogenic acute relay protein (StAR), a key protein necessary for intramitochondrial cholesterol transport. Here, we show that StAR expression is also inhibited by TGFbeta1 in the human adrenocortical carcinoma cell line NCI-H295R. This inhibitory effect is mediated by Smad proteins. Indeed, we found that overexpression of wild-type Smad3 inhibited endogenous StAR mRNA expression while overexpression of a dominant negative Smad3 protein reversed the inhibitory effect of TGFbeta1 on StAR mRNA expression. Taken together, these results demonstrate that the Smad3 protein is involved in TGFbeta-dependent regulation of steroidogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号