共查询到20条相似文献,搜索用时 87 毫秒
1.
介绍了锗氯化蒸馏的设备采用了两立方米的搪瓷釜以及蒸馏出来的GeC l4所使用的冷凝设备,由管状蛇行冷凝器改成碟片冷凝器,设备改造后其蒸出率同样能达到95%以上,从而改善了现场环境以及提高了生产产量. 相似文献
2.
氯化蒸馏渣中的锗90%为硅锗酸盐,为酸不溶锗,可溶于碱。采用碱溶液,浸出渣中的硅锗酸盐,在一定条件下,使硅锗分离(除硅),除硅后的溶液含Ge50mg·L^-1为贫锗溶液,为降低生产成本,贫锗溶液未加任何沉淀剂,直接水解沉淀锗而达到从氯化蒸馏渣中提取锗的目的。技术指标:锗浸出率〉85%,除硅率〉95%,沉锗率〉95%,锗的回收率〉70%。此工艺技术投入生产一年余,年处理氯化蒸馏渣2000余吨,回收锗1500kg。 相似文献
3.
4.
彭伟校 《有色金属(冶炼部分)》2017,(1):53-56
氯化蒸馏残渣中的锗在氢氧化钠浓度432g/L、液固比41、85℃浸出2h的条件下,锗浸出率可达99.21%,硅浸出率可达99.98%。浸出液通过离子交换方式进行分离锗和硅,然后进行沉锗和沉硅处理,锗的综合回收率可达99%。 相似文献
5.
提高含锗煤烟尘氯化蒸馏回收率的工艺研究 总被引:2,自引:0,他引:2
针对常规盐酸蒸馏分离提锗法处理,火法冶炼褐煤得到含锗煤烟尘回收率较低的问题,研究了一种经碱加热预处理后再进行蒸馏回收锗的方法,即通过加入锗煤烟尘重量20%~30%的氢氧化钠、2~3倍的水与锗煤烟尘混合搅拌均匀后,再加热至90~95℃并搅拌充分反应3~4 h,使锗煤烟尘中酸难溶的四面体型GeO2,GeO及GeS等形态的锗与氢氧化钠充分反应转变为盐酸可溶的锗酸钠。同时氢氧化钠与包裹锗的煤焦油发生皂化、或与二氧化硅发生反应后形成偏硅酸钠进入溶液,使被煤焦油、二氧化硅包裹的锗释放出来后会进一步与氢氧化钠反应形成锗酸钠。然后升温至碱处理后液沸腾,蒸发浓缩至处理后液的体积与锗烟尘的重量相当,以蒸发掉处理后溶液中过多水分。再加入烟尘重量8~9倍的10 mol·L-1工业盐酸中和过量的氢氧化钠,升温至90~110℃蒸馏分离得到四氯化锗,锗回收率可以提高5.39%~33.18%。该工艺适合烧失量较大的煤锗烟尘,具有锗回收率高,工艺流程简短,设备简单,可操作性强,辅料消耗较少,运行成本较低,对环境无污染等特点。 相似文献
6.
介绍将已经富集的含锗物料用湿法冶炼高效制取氧化锗的一些重要的化学反应,从不同品位的含锗富集物料中提取氧化锗的工艺流程,并简述各工艺流程的特点.同时介绍制取高纯氧化锗和金属锗的工艺流程. 相似文献
7.
刘攀 《有色冶金设计与研究》2017,(5):51-54
从设备监造工作人员的角度,结合非标冶金设备监造案例,分析了非标设备在制造过程中的监造工作特点,探究非标设备制造过程中的质量控制方法,并提出了一些建议和思考。 相似文献
8.
9.
通过热力学分析,绘制出Au-Te-Cl-H2O系E-pH图,结果表明碲化金在酸性氯酸盐体系中可被溶浸。碲化金氯化浸出后,将生成AuCl4-及碲化物,当溶液pH<3.7时,Te(Ⅳ)的化合物为HTeO2+;当pH>3.7时则以不溶性的H2TeO3存在。同时探讨了AuCl4-活度分别为1×10-4,1×10-2,1时,对Au-Cl-H2O系E-pH图中AuCl4-及Au(OH)3稳定区域的影响。结果表明,AuCl4-活度越大,其稳定区域越窄,且形成Au(OH)3的pH值越低。 相似文献
11.
采用了氯化钙氯化焙烧-水浸法提取白云母中铷的方法.通过氯化焙烧热重-差热分析曲线可知,用氯化钙混合白云母进行氯化反应的温度要比用氯化钠低100℃左右,且用CaCl2氯化比NaCl更有效率.接着考察了氯化焙烧温度对铷提取率的影响,结果表明,只有当氯化焙烧温度提高至800℃后,才可能取得明显的铷的氯化效果,铷的提取率即达96.71%,随氯化焙烧温度升高,铷的氯化速率不断增大,特别是800℃后,铷的氯化速率明显增大,这说明高温有利于铷的氯化焙烧.最终对白云母与氯化钙氯化焙烧过程进行了动力学研究.结果表明,三维界面反应方程能较好地描述该氯化焙烧反应体系,根据阿仑尼乌斯公式计算出来的活化能为42.22 kJ·mol-1,说明白云母和CaCl2的氯化过程的确受界面化学反应控制. 相似文献
12.
Tantalate-columbate concentrate has been studied; namely, its chemical, phase, and granulometric compositions and radioactivity have been investigated. The thermodynamics of reactions of chlorination of the components of the concentrate have been calculated in the temperature range of 400–1273 K. A technique of laboratory chlorination has been developed and experiments have been performed at T = 750 and 800°C. The products obtained have been analyzed. The total degree of chlorination of the concentrate, as well as of tantalum and niobium, has been determined at various temperatures. 相似文献
13.
铜渣中含有30 %~40 %的Fe, 对铜渣中的Fe进行回收, 有利于缓解中国依赖进口铁矿石的压力.基于热力学分析氯化除铜的可行性, 在823 K、873 K、923 K、973 K温度下, 通过热重分析研究CuO-FeCl2体系的氯化过程动力学, 并考察反应温度和Ar气流量对反应的影响: CuO-FeCl2体系的氯化率随温度的升高而增大, 当Ar流量为50 mL/min时, 氯化率达到最大值为62.46 %.通过推导氯化反应动力学公式, 确定CuO-FeCl2体系的氯化反应为0级反应, 并且在873 K时由氯化过程动力学区过渡到扩散区, 动力学区的反应速率取决于CuCl2的挥发速率, 扩散区的反应速率取决于FeCl2向CuO表面扩散的速率. 相似文献
14.
A. de Schepper 《Hydrometallurgy》1976,1(3):291-298
A process by which germanium is selectively extracted from sulphuric acid and hydrochloric acid solutions or mixtures thereof, is described. The extractant used is an α-hydroxyoxime, fabricated by General Mills (U.S.A.). The loading capacity of the extractant is about 14 g/l Ge.The stripping is done with an alkaline solution, preferentially NaOH, by which it is possible to obtain a strip solution containing 60 to 80 g/l germanium. Because of the high selectivity of the process one can obtain very pure products after hydrolysis of the germanium in the strip solution.Scrubbing with water prior to stripping removes sulphuric acid from the organic phase and reduces alkali consumption.Before recycling the organic phase to the extraction section it has to be treated with an acid solution. 相似文献
15.
16.
Behavior of tannins in germanium recovery by tannin process 总被引:1,自引:0,他引:1
The behavior of tannins in complexation with various metal ions was investigated to understand the complexation process of germanium, to reduce tannins use, and to improve the germanium recovery as a byproduct in zinc metallurgy. The experimental results obtained show that metal ions with relatively high valence (e.g. Fe3+) and big ionic radius (e.g. Pb2+) bind strongly to tannins, and that utilization of the tannins can be improved greatly by re-use and multi-use. 相似文献
17.
18.
针对某钢厂采用“BOF→LF→RH”工艺流程生产的高级别管线钢,通过金相、扫描电镜、能谱等手段分析了钢中夹杂物,并从热力学角度进行了研究.结果表明当钢中的w(Als)=0.025%,若钙处理时钢中w(CaO)>18×10-6,w(S)<0.011%,可较易地将Al2O3夹杂变性为低熔点的C12A7.研究后提出一系列工艺优化措施:强化转炉顶底复合吹炼工艺、改善吹氩站和LF的吹氩制度、调整精炼渣系使w(CaO)/w(SiO2)控制在4.5~6.0,w(CaO)/w(Al2O3)控制在1.7~1.9,最终钢水w(S)可控制在0.000 8%以下,氧化物和硫化物的夹杂物级别控制在1.0级以内. 相似文献
19.
20.
Peter M. Cole Kathryn C. Sole 《Mineral Processing and Extractive Metallurgy Review》2013,34(2):91-137
The global zinc industry is currently experiencing unprecedented interest in new developments and expansions. While most of the new projects and plant upgrades remain committed to traditional processing technologies, recent advances in zinc solvent extraction have created opportunities for new process routes in the treatment of both primary ore and secondary materials. The production of special high-grade zinc from the complex Skorpion ore, previously considered untreatable, will be the first commercial application of zinc solvent extraction for the mainstream processing of primary ore. This mine-to-metal project promises to become one of the lowest-cost zinc producers. Solvent extraction is also under consideration for several other oxide and sulfide projects in various stages of feasibility. With respect to the processing of secondary materials, new applications of zinc solvent extraction have proved advantageous for the treatment of zinc residues and furnace dust. In contrast to the zinc industry itself, zinc solvent extraction is well established in the refining of other base metals, providing an efficient means of eliminating zinc as an impurity element. Many applications have been for cobalt and nickel refinery operations. More recently, larger-scale applications have been for primary operations, where refined copper, cobalt, and nickel are produced at the mine site. Previously regarded as a waste product in such operations, interest is now being shown in recovering zinc as a valuable by-product in selected flowsheets. The industrial application of zinc solvent extraction is reviewed in this paper. The reagents used for the selective extraction of zinc are discussed to provide the basic rationale for the choice of this separation technique. An historical perspective is given by brief discussions of some early applications. The review then focuses on recent installations and projects under development where zinc solvent extraction features as the key separation step. 相似文献