首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
周帆  李树全  肖春静  吴跃 《计算机应用》2010,30(10):2605-2609
传感器网络等技术的广泛应用产生了大量不确定数据。近年来,对于不确定数据的处理和查询成为数据库和数据挖掘领域研究的热点。其中,传统关系数据库中的top-k查询和排序查询怎样拓展到不确定数据是其中的焦点之一。研究近年来提出的不确定数据库上top-k查询和排序查询算法,归纳和比较目前各种不同查询算法所适应的语义世界和应用场景,并详细分析各种算法的执行效率和算法复杂度。另外,对于不确定数据top-k查询和排序查询所面临的挑战和可能的研究方向进行了总结。  相似文献   

2.
Efficient fuzzy ranking queries in uncertain databases   总被引:1,自引:1,他引:0  
Recently, uncertain data have received dramatic attention along with technical advances on geographical tracking, sensor network and RFID etc. Also, ranking queries over uncertain data has become a research focus of uncertain data management. With dramatically growing applications of fuzzy set theory, lots of queries involving fuzzy conditions appear nowadays. These fuzzy conditions are widely applied for querying over uncertain data. For instance, in the weather monitoring system, weather data are inherent uncertainty due to some measurement errors. Weather data depicting heavy rain are desired, where ??heavy?? is ambiguous in the fuzzy query. However, fuzzy queries cannot ensure returning expected results from uncertain databases. In this paper, we study a novel kind of ranking queries, Fuzzy Ranking queries (FRanking queries) which extend the traditional notion of ranking queries. FRanking queries are able to handle fuzzy queries submitted by users and return k results which are the most likely to satisfy fuzzy queries in uncertain databases. Due to fuzzy query conditions, the ranks of tuples cannot be evaluated by existing ranking functions. We propose Fuzzy Ranking Function to calculate tuples?? ranks in uncertain databases for both attribute-level and tuple-level uncertainty models. Our ranking function take both the uncertainty and fuzzy semantics into account. FRanking queries are formally defined based on Fuzzy Ranking Function. In the processing of answering FRanking queries, we present a pruning method which safely prunes unnecessary tuples to reduce the search space. To further improve the efficiency, we design an efficient algorithm, namely Incremental Membership Algorithm (IMA) which efficiently answers FRanking queries by evaluating the ranks of incremental tuples under each threshold for the fuzzy set. We demonstrate the effectiveness and efficiency of our methods through the theoretical analysis and experiments with synthetic and real datasets.  相似文献   

3.
Data aggregation in Geographic Information Systems (GIS) is a desirable feature, only marginally present in commercial systems nowadays, mostly through ad hoc solutions. We address this problem introducing a formal model that integrates, in a natural way, geographic data and non-spatial information contained in a data warehouse external to the GIS. This approach allows both aggregation of geometric components and aggregation of measures associated to those components, defined in GIS fact tables. We define the notion of geometric aggregation, a general framework for aggregate queries in a GIS setting. Although general enough to express a wide range of (aggregate) queries, some of these queries can be hard to compute in a real-world GIS environment because they involve computing an integral over a certain area. Thus, we identify the class of summable queries, which can be efficiently evaluated replacing this integral with a sum of functions of geometric objects. Integration of GIS and OLAP (On Line Analytical Processing) is supported also through a language, GISOLAP-QL. We present an implementation, denoted Piet, which supports four kinds of queries: standard GIS, standard OLAP, geometric aggregation (like “total population in states with more than three airports”), and integrated GIS-OLAP queries (“total sales by product in cities crossed by a river”, also allowing navigation of the results). Further, Piet implements a novel query processing technique: first, a process called subpolygonization decomposes each thematic layer in a GIS, into open convex polygons; then, another process (the overlay precomputation) computes and stores in a database the overlay of those layers for later use by a query processor. Experimental evaluation showed that for a wide class of geometric queries, overlay precomputation outperforms R-tree-based techniques, suggesting that it can be an alternative for GIS query processing.  相似文献   

4.
This paper considers the theory of database queries on the complex value data model with external functions. Motivated by concerns regarding query evaluation, we first identify recursive sets of formulas, called embedded allowed, which is a class with desirable properties of “reasonable” queries.We then show that all embedded allowed calculus (or fix-point) queries are domain independent and continuous. An algorithm for translating embedded allowed queries into equivalent algebraic expressions as a basis for evaluating safe queries in all calculus-based query classes has been developed.Finally we discuss the topic of “domain independent query programs”, compare the expressive power of the various complex value query languages and their embedded allowed versions, and discuss the relationship between safety, embedded allowed, and domain independence in the various calculus-based queries.  相似文献   

5.
Graphs are widely used for modeling complicated data such as social networks, chemical compounds, protein interactions and semantic web. To effectively understand and utilize any collection of graphs, a graph database that efficiently supports elementary querying mechanisms is crucially required. For example, Subgraph and Supergraph queries are important types of graph queries which have many applications in practice. A primary challenge in computing the answers of graph queries is that pair-wise comparisons of graphs are usually hard problems. Relational database management systems (RDBMSs) have repeatedly been shown to be able to efficiently host different types of data such as complex objects and XML data. RDBMSs derive much of their performance from sophisticated optimizer components which make use of physical properties that are specific to the relational model such as sortedness, proper join ordering and powerful indexing mechanisms. In this article, we study the problem of indexing and querying graph databases using the relational infrastructure. We present a purely relational framework for processing graph queries. This framework relies on building a layer of graph features knowledge which capture metadata and summary features of the underlying graph database. We describe different querying mechanisms which make use of the layer of graph features knowledge to achieve scalable performance for processing graph queries. Finally, we conduct an extensive set of experiments on real and synthetic datasets to demonstrate the efficiency and the scalability of our techniques.  相似文献   

6.
Most Web pages contain location information, which are usually neglected by traditional search engines. Queries combining location and textual terms are called as spatial textual Web queries. Based on the fact that traditional search engines pay little attention in the location information in Web pages, in this paper we study a framework to utilize location information for Web search. The proposed framework consists of an offline stage to extract focused locations for crawled Web pages, as well as an online ranking stage to perform location-aware ranking for search results. The focused locations of a Web page refer to the most appropriate locations associated with the Web page. In the offline stage, we extract the focused locations and keywords from Web pages and map each keyword with specific focused locations, which forms a set of <keyword, location> pairs. In the second online query processing stage, we extract keywords from the query, and computer the ranking scores based on location relevance and the location-constrained scores for each querying keyword. The experiments on various real datasets crawled from nj.gov, BBC and New York Time show that the performance of our algorithm on focused location extraction is superior to previous methods and the proposed ranking algorithm has the best performance w.r.t different spatial textual queries.  相似文献   

7.
Uncertain data is inherent in a few important applications. It is far from trivial to extend ranking queries (also known as top-k queries), a popular type of queries on certain data, to uncertain data. In this paper, we cast ranking queries on uncertain data using three parameters: rank threshold k, probability threshold p, and answer set size threshold l. Systematically, we identify four types of ranking queries on uncertain data. First, a probability threshold top-k query computes the uncertain records taking a probability of at least p to be in the top-k list. Second, a top-(k, l) query returns the top-l uncertain records whose probabilities of being ranked among top-k are the largest. Third, the p-rank of an uncertain record is the smallest number k such that the record takes a probability of at least p to be ranked in the top-k list. A rank threshold top-k query retrieves the records whose p-ranks are at most k. Last, a top-(p, l) query returns the top-l uncertain records with the smallest p-ranks. To answer such ranking queries, we present an efficient exact algorithm, a fast sampling algorithm, and a Poisson approximation-based algorithm. To answer top-(k, l) queries and top-(p, l) queries, we propose PRist+, a compact index. An efficient index construction algorithm and efficacious query answering methods are developed for PRist+. An empirical study using real and synthetic data sets verifies the effectiveness of the probabilistic ranking queries and the efficiency of our methods.  相似文献   

8.
Top-K ranking queries in uncertain databases aim to find the top-K tuples according to a ranking function. The interplay between score and uncertainty makes top-K ranking in uncertain databases an intriguing issue, leading to rich query semantics. Recently, a unified ranking framework based on parameterized ranking functions (PRFs) has been formulated, which generalizes many previously proposed ranking semantics. Under the PRFs based ranking framework, efficient pruning approach for Top-K ranking on datasets with tuple-wise uncertainty has been well studied in the literature. However, this cannot be applied to top-K ranking on datasets with attribute-wise uncertainty, which are often natural and useful in analyzing uncertain data in many applications. This paper aims to develop efficient pruning techniques for top-K ranking on datasets with attribute-wise uncertainty under the PRFs based ranking framework, which has not been well studied in the literature. We first develop a Tuple Insertion Based Algorithm for computing each tuple’s PRF value, which reduce the time cost from the state of the art cubic order of magnitude to quadratic order of magnitude. Based on the Tuple Insertion Based Algorithm, three pruning strategies are developed to further reduce the time cost. The mathematics of deriving the Tuple Insertion Based Algorithm and corresponding pruning strategies are also presented. At last, we show that our pruning algorithms can also be applied to the computation of the top-k aggregate queries. The experimental results on both real and synthetic data demonstrate the effectiveness and efficiency of the proposed pruning techniques.  相似文献   

9.
As a result of the extensive research in view-based query processing, three notions have been identified as fundamental, namely rewriting, answering, and losslessness. Answering amounts to computing the tuples satisfying the query in all databases consistent with the views. Rewriting consists in first reformulating the query in terms of the views and then evaluating the rewriting over the view extensions. Losslessness holds if we can answer the query by solely relying on the content of the views. While the mutual relationship between these three notions is easy to identify in the case of conjunctive queries, the terrain of notions gets considerably more complicated going beyond such a query class. In this paper, we revisit the notions of answering, rewriting, and losslessness and clarify their relationship in the setting of semistructured databases, and in particular for the basic query class in this setting, i.e., two-way regular path queries. Our first result is a clean explanation of the relationship between answering and rewriting, in which we characterize rewriting as a “linear approximation” of query answering. We show that applying this linear approximation to the constraint-satisfaction framework yields an elegant automata-theoretic approach to query rewriting. As for losslessness, we show that there are indeed two distinct interpretations for this notion, namely with respect to answering, and with respect to rewriting. We also show that the constraint-theoretic approach and the automata-theoretic approach can be combined to give algorithmic characterization of the various facets of losslessness. Finally, we deal with the problem of coping with loss, by considering mechanisms aimed at explaining lossiness to the user.  相似文献   

10.
Privacy is a major concern when users query public online data services. The privacy of millions of people has been jeopardized in numerous user data leakage incidents in many popular online applications. To address the critical problem of personal data leakage through queries, we enable private querying on public data services so that the contents of user queries and any user data are hidden and therefore not revealed to the online service providers. We propose two protocols for private processing of database queries, namely BHE and HHE. The two protocols provide strong query privacy by using Paillier’s homomorphic encryption, and support common database queries such as range and join queries by relying on the bucketization of public data. In contrast to traditional Private Information Retrieval proposals, BHE and HHE only incur one round of client server communication for processing a single query. BHE is a basic private query processing protocol that provides complete query privacy but still incurs expensive computation and communication costs. Built upon BHE, HHE is a hybrid protocol that applies ciphertext computation and communication on a subset of the data, such that this subset not only covers the actual requested data but also resembles some frequent query patterns of common users, thus achieving practical query performance while ensuring adequate privacy levels. By using frequent query patterns and data specific privacy protection, HHE is not vulnerable to the traditional attacks on k-Anonymity that exploit data similarity and skewness. Moreover, HHE consistently protects user query privacy for a sequence of queries in a single query session.  相似文献   

11.
Incompleteness due to missing attribute values (aka “null values”) is very common in autonomous web databases, on which user accesses are usually supported through mediators. Traditional query processing techniques that focus on the strict soundness of answer tuples often ignore tuples with critical missing attributes, even if they wind up being relevant to a user query. Ideally we would like the mediator to retrieve such possibleanswers and gauge their relevance by accessing their likelihood of being pertinent answers to the query. The autonomous nature of web databases poses several challenges in realizing this objective. Such challenges include the restricted access privileges imposed on the data, the limited support for query patterns, and the bounded pool of database and network resources in the web environment. We introduce a novel query rewriting and optimization framework QPIAD that tackles these challenges. Our technique involves reformulating the user query based on mined correlations among the database attributes. The reformulated queries are aimed at retrieving the relevant possibleanswers in addition to the certain answers. QPIAD is able to gauge the relevance of such queries allowing tradeoffs in reducing the costs of database query processing and answer transmission. To support this framework, we develop methods for mining attribute correlations (in terms of Approximate Functional Dependencies), value distributions (in the form of Naïve Bayes Classifiers), and selectivity estimates. We present empirical studies to demonstrate that our approach is able to effectively retrieve relevant possibleanswers with high precision, high recall, and manageable cost.  相似文献   

12.
Provenance has become increasingly important in scientific workflows to understand, verify, and reproduce the result of scientific data analysis. Most existing systems store provenance data in provenance stores with proprietary provenance data models and conduct query processing over the physical provenance storages using query languages, such as SQL, SPARQL, and XQuery, which are closely coupled to the underlying storage strategies. Querying provenance at such low level leads to poor usability of the system: a user needs to know the underlying schema to formulate queries; if the schema changes, queries need to be reformulated; and queries formulated for one system will not run in another system. In this paper, we present OPQL, a provenance query language that enables the querying of provenance directly at the graph level. An OPQL query takes a provenance graph as input and produces another provenance graph as output. Therefore, OPQL queries are not tightly coupled to the underlying provenance storage strategies. Our main contributions are: (i) we design OPQL, including six types of graph patterns, a provenance graph algebra, and OPQL syntax and semantics, that supports querying provenance at the graph level; (ii) we implement OPQL using a Web service via our OPMProv system; therefore, users can invoke the Web service to execute OPQL queries in a provenance browser, called OPMProVis. The result of OPQL queries is displayed as a provenance graph in OPMProVis. An experimental study is conducted to evaluate the feasibility and performance of OPMProv on OPQL provenance querying.  相似文献   

13.
Object-oriented databases (OODBs) provide an effective means for capturing complex data and semantic relationships underlying many real-world database applications. Because users' interactions with databases have increased significantly in today's era of client–server computing, it is important to examine users' ability to interact with such databases. We investigated a number of factors that potentially affect performance in writing queries on an OODB. First, we evaluated the utility of graphical and textual schemas associated with emerging OODBs from the perspective of database querying. Second, we examined the use of two different strategies (navigation and join) that could be used in writing OODB queries. Third, we examined a number of factors that potentially contribute to the complexity of an OODB query.Our exploratory study examined the performance of 20 graduate students in an experiment in which each participant wrote queries for two problems, one using a graphical OODB schema and the other a textual OODB schema. The participants had no prior exposure to the object-oriented data model. We found that there was no difference in query writing performance (either accuracy or time) using the graphical and textual schemas. Examination of query strategy revealed that a significant number of participants used a join strategy, rather than the navigation strategy that matches the database structure. Use of the join strategy resulted in significantly less accurate and slower query writing than did the navigation strategy. From the viewpoint of complexity, the number of objects referenced in a query, the number of starting points in the from clause, and the presence of special operators influenced both the accuracy and time of query writing.  相似文献   

14.
Exploratory data mining and analysis requires a computing environment which provides facilities for the user-friendly expression and rapid execution of scientific queries. In this paper, we address research issues in the parallelization of scientific queries containing complex user-defined operations. In a parallel query execution environment, parallelizing a query execution plan involves determining how input data streams to evaluators implementing logical operations can be divided to be processed by clones of the same evaluator in parallel. We introduced the concept of relevance window that characterizes data lineage and data partitioning opportunities available for an user-defined evaluator. In addition, we developed a query parallelization framework by extending relational parallel query optimization algorithms to allow the parallelization characteristics of user-defined evaluators to guide the process of query parallelization in an extensible query processing environment. We demonstrated the utility of our system by performing experiments mining cyclonic activity, blocking events, and the upward wave-energy propagation features from several observational and model simulation datasets.  相似文献   

15.
The problem of kNN (k Nearest Neighbor) queries has received considerable attention in the database and information retrieval communities. Given a dataset D and a kNN query q, the k nearest neighbor algorithm finds the closest k data points to q. The applications of kNN queries are board, not only in spatio-temporal databases but also in many areas. For example, they can be used in multimedia databases, data mining, scientific databases and video retrieval. The past studies of kNN query processing did not consider the case that the server may receive multiple kNN queries at one time. Their algorithms process queries independently. Thus, the server will be busy with continuously reaccessing the database to obtain the data that have already been acquired. This results in wasting I/O costs and degrading the performance of the whole system. In this paper, we focus on this problem and propose an algorithm named COrrelated kNN query Evaluation (COKE). The main idea of COKE is an “information sharing” strategy whereby the server reuses the query results of previously executed queries for efficiently processing subsequent queries. We conduct a comprehensive set of experiments to analyze the performance of COKE and compare it with the Best-First Search (BFS) algorithm. Empirical studies indicate that COKE outperforms BFS, and achieves lower I/O costs and less running time.  相似文献   

16.
Distribution and uncertainty are considered as the most important design issues in database applications nowadays. A lot of ranking or top-k query processing techniques are introduced to solve the problems of communication cost and centralized processing. On the other hand, many techniques are also developed for modeling and managing uncertain databases. Although these techniques were efficient, they didn't deal with distributed data uncertainty. This paper proposes a framework that deals with both data distribution and uncertainty based on ranking queries. Within the proposed framework, communication and computation-efficient algorithms are investigated for retrieving the top-k tuples from distributed sites. The main objective of these algorithms is to reduce the communication rounds utilized and amount of data transmitted while achieving efficient ranking. Experimental results show that both proposed techniques have a great impact in reducing communication cost. Both techniques are efficient but in different situations. The first one is efficient in the case of low number of sites while the other achieves better performance at higher number of sites.  相似文献   

17.
Users of information systems would like to express flexible queries over the data possibly retrieving imperfect items when the perfect ones, which exactly match the selection conditions, are not available. Most commercial DBMSs are still based on the SQL for querying. Therefore, providing some flexibility to SQL can help users to improve their interaction with the systems without requiring them to learn a completely novel language. Based on the fuzzy set theory and the α-cut operation of fuzzy number, this paper presents the generic fuzzy queries against classical relational databases and develops the translation of the fuzzy queries. The generic fuzzy queries mean that the query condition consists of complex fuzzy terms as the operands and complex fuzzy relations as the operators in a fuzzy query. With different thresholds that the user chooses for the fuzzy query, the user’s fuzzy queries can be translated into precise queries for classical relational databases.  相似文献   

18.
In this paper, we identify a novel and interesting type of queries, contextual ranking queries, which return the ranks of query tuples among some context tuples given in the queries. Contextual ranking queries are useful for olap and decision support applications in non-traditional data exploration. They provide a mechanism to quickly identify where tuples stand within the context. In this paper, we extend the sql language to express contextual ranking queries and propose a general partition-based framework for processing them. In this framework, we use a novel method that utilizes bitmap indices built on ranking functions. This method can efficiently identify a small number of candidate tuples, thus achieves lower cost than alternative methods. We analytically investigate the advantages and drawbacks of these methods, according to a preliminary cost model. Experimental results suggest that the algorithm using bitmap indices on ranking functions can be substantially more efficient than other methods.  相似文献   

19.
Many database applications and environments, such as mediation over heterogeneous database sources and data warehousing for decision support, lead to complex queries. Queries are often nested, defined over previously defined views, and may involve unions. There are good reasons why one might want to remove pieces (sub-queries or sub-views) from such queries: some sub-views of a query may be effectively cached from previous queries, or may be materialized views; some may be known to evaluate empty, by reasoning over the integrity constraints; and some may match protected queries, which for security cannot be evaluated for all users.In this paper, we present a new evaluation strategy with respect to queries defined over views, which we call tuple-tagging, that allows for an efficient removal of sub-views from the query. Other approaches to this are to rewrite the query so the sub-views to be removed are effectively gone, then to evaluate the rewritten query. With the tuple tagging evaluation, no rewrite of the original query is necessary.We describe formally a discounted query (a query with sub-views marked that are to be considered as removed), present the tuple tagging algorithm for evaluating discounted queries, provide an analysis of the algorithm's performance, and present some experimental results. These results strongly support the tuple-tagging algorithm both as an efficient means to effectively remove sub-views from a view query during evaluation, and as a viable optimization strategy for certain applications. The experiments also suggest that rewrite techniques for this may perform worse than the evaluation of the original query, and much worse than the tuple tagging approach.  相似文献   

20.
This article presents a novel type of queries in spatial databases, called the direction-aware bichromatic reverse k nearest neighbor(DBRkNN) queries, which extend the bichromatic reverse nearest neighbor queries. Given two disjoint sets, P and S, of spatial objects, and a query object q in S, the DBRkNN query returns a subset P′ of P such that k nearest neighbors of each object in P′ include q and each object in P′ has a direction toward q within a pre-defined distance. We formally define the DBRkNN query, and then propose an efficient algorithm, called DART, for processing the DBRkNN query. Our method utilizes a grid-based index to cluster the spatial objects, and the B+-tree to index the direction angle. We adopt a filter-refinement framework that is widely used in many algorithms for reverse nearest neighbor queries. In the filtering step, DART eliminates all the objects that are away from the query object more than a pre-defined distance, or have an invalid direction angle. In the refinement step, remaining objects are verified whether the query object is actually one of the k nearest neighbors of them. As a major extension of DART, we also present an improved algorithm, called DART+, for DBRkNN queries. From extensive experiments with several datasets, we show that DART outperforms an R-tree-based naive algorithm in both indexing time and query processing time. In addition, our extension algorithm, DART+, also shows significantly better performance than DART.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号