首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper focuses on approximating the metric 1-median problem with sublinear number of queries and time complexity. We first show a simper proof of the currently best 4-approximation algorithm, and then propose a recursive algorithm. For any integer h?2h?2, the algorithm finds a 2h  -approximation solution with O(n1+1/h)O(n1+1/h) queries and time complexity.  相似文献   

2.
In this paper we show a new method for calculating the nucleolus by solving a unique minimization linear program with O(4n)O(4n) constraints whose coefficients belong to {−1,0,1}{1,0,1}. We discuss the need of having all these constraints and empirically prove that they can be reduced to O(kmax2n)O(kmax2n), where kmax is a positive integer comparable with the number of players. A computational experience shows the applicability of our method over (pseudo)random transferable utility cooperative games with up to 18 players.  相似文献   

3.
We give an algorithm that computes the pathwidth of a given directed graph D   in 3τ(D)nO(1)3τ(D)nO(1) time where n is the number of vertices of D   and τ(D)τ(D) is the number of vertices of a minimum vertex cover of the underlying undirected graph of D. This result extends that of [5] for undirected graphs to directed graphs. Moreover, our algorithm is based on a standard dynamic programming with a simple tree-pruning trick, which is extremely simple and easy to implement. An additional advantage of our algorithm is that a minimum vertex cover appears in the analysis but not in the algorithm itself, in contrast to the algorithm of [5] which needs to compute a minimum vertex cover.  相似文献   

4.
5.
6.
7.
8.
A fast and new heuristic recursive algorithm to find a minimum height for two-dimensional strip rectangular packing problem is presented. This algorithm is mainly based on heuristic strategies and a recursive structure, and its average running time is T(n)=θ(n3)T(n)=θ(n3). The computational results on a class of benchmark problems have shown that this algorithm not only finds shorter height than the known meta-heuristic ones, but also runs in shorter time. Especially for large test problems, it performs better.  相似文献   

9.
The most efficient currently known algorithms for two-dimensional pattern matching with rotations have a worst case time complexity of O(n2m3)O(n2m3), where the size of the text is n×nn×n and the size of the pattern is m×mm×m. In this paper we present a new algorithm for the problem whose running time is O(n2m2)O(n2m2).  相似文献   

10.
11.
12.
We present a simple exact algorithm for counting bicliques of given size in a bipartite graph on n   vertices. We achieve running time of O(1.2491n)O(1.2491n), improving upon known exact algorithms for finding and counting bipartite cliques.  相似文献   

13.
14.
The twisted cube is an important variation of the hypercube. It possesses many desirable properties for interconnection networks. In this paper, we study fault-tolerant embedding of paths in twisted cubes. Let TQn(V,E)TQn(V,E) denote the n-dimensional twisted cube. We prove that a path of length l   can be embedded between any two distinct nodes with dilation 1 for any faulty set F⊂V(TQn)∪E(TQn)FV(TQn)E(TQn) with |F|?n-3|F|?n-3 and any integer l   with 2n-1-1?l?|V(TQn-F)|-12n-1-1?l?|V(TQn-F)|-1 (n?3n?3). This result is optimal in the sense that the embedding has the smallest dilation 1. The result is also complete in the sense that the two bounds on path length l   and faulty set size |F||F| for a successful embedding are tight. That is, the result does not hold if l?2n-1-2l?2n-1-2 or |F|?n-2|F|?n-2. We also extend the result on (n-3)(n-3)-Hamiltonian connectivity of TQnTQn in the literature.  相似文献   

15.
A polygon P admits a sweep if two mobile guards can detect an unpredictable, moving target inside P  , no matter how fast the target moves. Two guards move on the polygon boundary and are required to always be mutually visible. The objective of this study is to find an optimum sweep such that the sum of the distances travelled by the two guards in the sweep is minimized. We present an O(n2)O(n2) time and O(n)O(n) space algorithm for optimizing this metric, where n   is the number of vertices of the given polygon. Our result is obtained by reducing this problem to finding a shortest path between two nodes in a graph of size O(n)O(n).  相似文献   

16.
17.
18.
19.
20.
We present a depth-first search algorithm for generating all maximal cliques of an undirected graph, in which pruning methods are employed as in the Bron–Kerbosch algorithm. All the maximal cliques generated are output in a tree-like form. Subsequently, we prove that its worst-case time complexity is O(3n/3)O(3n/3) for an n-vertex graph. This is optimal as a function of n  , since there exist up to 3n/33n/3 maximal cliques in an n-vertex graph. The algorithm is also demonstrated to run very fast in practice by computational experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号