首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mining frequent itemsets is an essential problem in data mining and plays an important role in many data mining applications. In recent years, some itemset representations based on node sets have been proposed, which have shown to be very efficient for mining frequent itemsets. In this paper, we propose DiffNodeset, a novel and more efficient itemset representation, for mining frequent itemsets. Based on the DiffNodeset structure, we present an efficient algorithm, named dFIN, to mining frequent itemsets. To achieve high efficiency, dFIN finds frequent itemsets using a set-enumeration tree with a hybrid search strategy and directly enumerates frequent itemsets without candidate generation under some case. For evaluating the performance of dFIN, we have conduct extensive experiments to compare it against with existing leading algorithms on a variety of real and synthetic datasets. The experimental results show that dFIN is significantly faster than these leading algorithms.  相似文献   

2.
Node-list and N-list, two novel data structure proposed in recent years, have been proven to be very efficient for mining frequent itemsets. The main problem of these structures is that they both need to encode each node of a PPC-tree with pre-order and post-order code. This causes that they are memory-consuming and inconvenient to mine frequent itemsets. In this paper, we propose Nodeset, a more efficient data structure, for mining frequent itemsets. Nodesets require only the pre-order (or post-order code) of each node, which makes it saves half of memory compared with N-lists and Node-lists. Based on Nodesets, we present an efficient algorithm called FIN to mining frequent itemsets. For evaluating the performance of FIN, we have conduct experiments to compare it with PrePost and FP-growth1, two state-of-the-art algorithms, on a variety of real and synthetic datasets. The experimental results show that FIN is high performance on both running time and memory usage.  相似文献   

3.
A complete set of frequent itemsets can get undesirably large due to redundancy when the minimum support threshold is low or when the database is dense. Several concise representations have been previously proposed to eliminate the redundancy. Generator based representations rely on a negative border to make the representation lossless. However, the number of itemsets on a negative border sometimes even exceeds the total number of frequent itemsets. In this paper, we propose to use a positive border together with frequent generators to form a lossless representation. A positive border is usually orders of magnitude smaller than its corresponding negative border. A set of frequent generators plus its positive border is always no larger than the corresponding complete set of frequent itemsets, thus it is a true concise representation. The generalized form of this representation is also proposed. We develop an efficient algorithm, called GrGrowth, to mine generators and positive borders as well as their generalizations. The GrGrowth algorithm uses the depth-first-search strategy to explore the search space, which is much more efficient than the breadth-first-search strategy adopted by most of the existing generator mining algorithms. Our experiment results show that the GrGrowth algorithm is significantly faster than level-wise algorithms for mining generator based representations, and is comparable to the state-of-the-art algorithms for mining frequent closed itemsets.
Guimei LiuEmail:
  相似文献   

4.
针对最大频繁项目集挖掘算法(DMFIA)当候选项目集维数高而最大频繁项目集维数较低的情况下要产生大量的候选项目集的缺点,提出了一种改进的基于频繁模式树(FP-tree)结构的最大频繁项目集挖掘算法--FP-MFIA。该算法根据FP-tree的项目头表,采用自底向上的搜索策略逐层挖掘最大频繁项目集,从而加速每次对候选集计数的操作。在挖掘时根据每层的条件模式基产生维数较低的非频繁项目集,尽早对候选项目集进行剪枝和降维,可大量减少候选项目集的数量。同时在挖掘时充分利用最大频繁项集的性质,减少搜索空间。通过算法在不同支持度下挖掘时间的对比可知,算法FP-MFIA在最小支持度较低的情况下时间效率是DMFIA以及基于降维的最大频繁模式挖掘算法(BDRFI)的2倍以上,说明FP-MFIA在候选集维数较高的时候优势明显。  相似文献   

5.
张炘  廖频  郭波 《计算机应用》2010,30(3):806-809
频繁闭项集挖掘是许多数据挖掘应用中的重要问题。为减少候选项集数量和降低支持度计算的开销,提出一种新的深度优先搜索频繁闭项集(DFFCI)的算法。将改进的压缩频繁模式树(CFP-Tree)表示的数据集信息投影到划分矩阵,使用二进制向量逻辑运算计算支持度,简化了计算过程,减少了时间开销;采用基于支持度预计算技术的全局2-项剪枝和局部扩展剪枝,有效削减了搜索空间。实验结果表明该算法的性能优于其他主流深度优先算法。  相似文献   

6.
In recent times, data are generated as a form of continuous data streams in many applications. Since handling data streams is necessary and discovering knowledge behind data streams can often yield substantial benefits, mining over data streams has become one of the most important issues. Many approaches for mining frequent itemsets over data streams have been proposed. These approaches often consist of two procedures including continuously maintaining synopses for data streams and finding frequent itemsets from the synopses. However, most of the approaches assume that the synopses of data streams can be saved in memory and ignore the fact that the information of the non-frequent itemsets kept in the synopses may cause memory utilization to be significantly degraded. In this paper, we consider compressing the information of all the itemsets into a structure with a fixed size using a hash-based technique. This hash-based approach skillfully summarizes the information of the whole data stream by using a hash table, provides a novel technique to estimate the support counts of the non-frequent itemsets, and keeps only the frequent itemsets for speeding up the mining process. Therefore, the goal of optimizing memory space utilization can be achieved. The correctness guarantee, error analysis, and parameter setting of this approach are presented and a series of experiments is performed to show the effectiveness and the efficiency of this approach.  相似文献   

7.
A data stream is a massive and unbounded sequence of data elements that are continuously generated at a fast speed. Compared with traditional approaches, data mining in data streams is more challenging since several extra requirements need to be satisfied. In this paper, we propose a mining algorithm for finding frequent itemsets over the transactional data stream. Unlike most of existing algorithms, our method works based on the theory of Approximate Inclusion–Exclusion. Without incrementally maintaining the overall synopsis of the stream, we can approximate the itemsets’ counts according to certain kept information and the counts bounding technique. Some additional techniques are designed and integrated into the algorithm for performance improvement. Besides, the performance of the proposed algorithm is tested and analyzed through a series of experiments.  相似文献   

8.
钱雪忠  惠亮 《计算机应用》2011,31(5):1339-1343
基于FP-tree的最大频繁模式挖掘算法是目前较为高效的频繁模式挖掘算法,针对这些算法需要递归生成条件FP-tree、产生大量候选最大频繁项集等问题,在分析FPMax、DMFIA算法的基础上,提出基于降维的最大频繁模式挖掘算法(BDRFI)。该算法改传统的FP-tree为数字频繁模式树DFP-tree,提高了超集检验的效率;采用的预测剪枝策略减少了挖掘的次数;基于降低项集维度的挖掘方式,减少了候选项的数目,避免了递归地产生条件频繁模式树,提高了算法的效率。实验结果表明,BDRFI的效率是同类算法的2~8倍。  相似文献   

9.
Mining frequent itemsets has emerged as a fundamental problem in data mining and plays an essential role in many important data mining tasks.In this paper,we propose a novel vertical data representation called N-list,which originates from an FP-tree-like coding prefix tree called PPC-tree that stores crucial information about frequent itemsets.Based on the N-list data structure,we develop an efficient mining algorithm,PrePost,for mining all frequent itemsets.Efficiency of PrePost is achieved by the following three reasons.First,N-list is compact since transactions with common prefixes share the same nodes of the PPC-tree.Second,the counting of itemsets’ supports is transformed into the intersection of N-lists and the complexity of intersecting two N-lists can be reduced to O(m + n) by an efficient strategy,where m and n are the cardinalities of the two N-lists respectively.Third,PrePost can directly find frequent itemsets without generating candidate itemsets in some cases by making use of the single path property of N-list.We have experimentally evaluated PrePost against four state-of-the-art algorithms for mining frequent itemsets on a variety of real and synthetic datasets.The experimental results show that the PrePost algorithm is the fastest in most cases.Even though the algorithm consumes more memory when the datasets are sparse,it is still the fastest one.  相似文献   

10.
11.
In recent years, data stream mining has become an important research topic. With the emergence of new applications, the data we process are not again static, but the continuous dynamic data stream. Examples include network traffic analysis, Web click stream mining, network intrusion detection, and on-line transaction analysis. In this paper, we propose a new framework for data stream mining, called the weighted sliding window model. The proposed model allows the user to specify the number of windows for mining, the size of a window, and the weight for each window. Thus users can specify a higher weight to a more significant data section, which will make the mining result closer to user’s requirements. Based on the weighted sliding window model, we propose a single pass algorithm, called WSW, to efficiently discover all the frequent itemsets from data streams. By analyzing data characteristics, an improved algorithm, called WSW-Imp, is developed to further reduce the time of deciding whether a candidate itemset is frequent or not. Empirical results show that WSW-Imp outperforms WSW under the weighted sliding window model.  相似文献   

12.
This paper proposes an efficient method, the frequent items ultrametric trees (FIUT), for mining frequent itemsets in a database. FIUT uses a special frequent items ultrametric tree (FIU-tree) structure to enhance its efficiency in obtaining frequent itemsets. Compared to related work, FIUT has four major advantages. First, it minimizes I/O overhead by scanning the database only twice. Second, the FIU-tree is an improved way to partition a database, which results from clustering transactions, and significantly reduces the search space. Third, only frequent items in each transaction are inserted as nodes into the FIU-tree for compressed storage. Finally, all frequent itemsets are generated by checking the leaves of each FIU-tree, without traversing the tree recursively, which significantly reduces computing time. FIUT was compared with FP-growth, a well-known and widely used algorithm, and the simulation results showed that the FIUT outperforms the FP-growth. In addition, further extensions of this approach and their implications are discussed.  相似文献   

13.
Mining frequent itemsets from large databases has played an essential role in many data mining tasks. It is also important to maintain the discovered frequent itemsets for these data mining tasks when the database is updated. All algorithms proposed so far for the maintenance of discovered frequent itemsets are only performed with a fixed minimum support,which is the same as that used to obtain the discovered frequent itemsets. That is, users cannot change the minimum support even if the new results are unsatisfactory to the users. In this paper two new complementary algorithms, FMP (First Maintaining Process) and RMP (Repeated Maintaining Process), are proposed to maintain discovered frequent itemsets in the case that new transaction data are added to a transaction database. Both algorithms allow users to change the minimum support for the maintenance processes. FMP is used for the first maintaining process, and when the result derived from the FMP is unsatisfactory, RMP will be performed repeatedly until satisfactory results are obtained. The proposed algorithms re-use the previous results to cut down the cost of maintenance. Extensive experiments have been conducted to assess the performance of the algorithms. The experimental results show that the proposed algorithms are very resultful compared with the previous mining and maintenance algorithms for maintenance of discovered frequent itemsets.  相似文献   

14.
在单向FP-tree上挖掘频繁闭项集   总被引:1,自引:0,他引:1       下载免费PDF全文
频繁闭项集提供了频繁项集的一种完整的、最小表示。针对稠密数据集,提出一种基于单向FP-tree的频繁闭项集挖掘算法Unid_FP-FCI。该算法在挖掘过程中只生成被约束子树,而它是一种虚拟的树结构,在原有的单向FP-tree基础上用三个很小的数组来表示,因而避免了以往算法需递归构造条件FP-tree来计算频繁闭项集的弊端,极大地降低了内存空间和时间开销,提高了挖掘效率。  相似文献   

15.
A survey on algorithms for mining frequent itemsets over data streams   总被引:1,自引:8,他引:1  
The increasing prominence of data streams arising in a wide range of advanced applications such as fraud detection and trend learning has led to the study of online mining of frequent itemsets (FIs). Unlike mining static databases, mining data streams poses many new challenges. In addition to the one-scan nature, the unbounded memory requirement and the high data arrival rate of data streams, the combinatorial explosion of itemsets exacerbates the mining task. The high complexity of the FI mining problem hinders the application of the stream mining techniques. We recognize that a critical review of existing techniques is needed in order to design and develop efficient mining algorithms and data structures that are able to match the processing rate of the mining with the high arrival rate of data streams. Within a unifying set of notations and terminologies, we describe in this paper the efforts and main techniques for mining data streams and present a comprehensive survey of a number of the state-of-the-art algorithms on mining frequent itemsets over data streams. We classify the stream-mining techniques into two categories based on the window model that they adopt in order to provide insights into how and why the techniques are useful. Then, we further analyze the algorithms according to whether they are exact or approximate and, for approximate approaches, whether they are false-positive or false-negative. We also discuss various interesting issues, including the merits and limitations in existing research and substantive areas for future research.  相似文献   

16.
Frequent closed itemsets (FCI) play an important role in pruning redundant rules fast. Therefore, a lot of algorithms for mining FCI have been developed. Algorithms based on vertical data formats have some advantages in that they require scan databases once and compute the support of itemsets fast. Recent years, BitTable (Dong & Han, 2007) and IndexBitTable (Song, Yang, & Xu, 2008) approaches have been applied for mining frequent itemsets and results are significant. However, they always use a fixed size of Bit-Vector for each item (equal to number of transactions in a database). It leads to consume more memory for storage Bit-Vectors and the time for computing the intersection among Bit-Vectors. Besides, they only apply for mining frequent itemsets, algorithm for mining FCI based on BitTable is not proposed. This paper introduces a new method for mining FCI from transaction databases. Firstly, Dynamic Bit-Vector (DBV) approach will be presented and algorithms for fast computing the intersection between two DBVs are also proposed. Lookup table is used for fast computing the support (number of bits 1 in a DBV) of itemsets. Next, subsumption concept for memory and computing time saving will be discussed. Finally, an algorithm based on DBV and subsumption concept for mining frequent closed itemsets fast is proposed. We compare our method with CHARM, and recognize that the proposed algorithm is more efficient than CHARM in both the mining time and the memory usage.  相似文献   

17.
一种基于FP-tree的最大频繁项目集挖掘算法   总被引:7,自引:0,他引:7  
刘乃丽  李玉忱  马磊 《计算机应用》2005,25(5):998-1000
挖掘关联规则是数据挖掘领域中的重要研究内容,其中挖掘最大频繁项目集是挖掘关联规则中的关键问题之一,以前的许多挖掘最大频繁项目集算法是先生成候选,再进行检验,然而候选项目集产生的代价是很高的,尤其是存在大量长模式的时候。文中改进了FP 树结构,提出了一种基于FP tree的快速挖掘最大频繁项目集的算法DMFIA 1,该算法不需要生成最大频繁候选项目集,比DMFIA算法挖掘最大频繁项目集的效率更高。改进的FP 树是单向的,每个结点只保留指向父结点的指针,这大约节省了三分之一的树空间。  相似文献   

18.
王鑫  刘方爱 《计算机应用》2016,36(7):1988-1992
针对已有的多数据流协同频繁项集挖掘算法存在内存占用率高以及发现频繁项集效率低的问题,提出了改进的多数据流协同频繁项集挖掘(MCMD-Stream)算法。首先,该算法利用单遍扫描数据库的字节序列滑动窗口挖掘算法发现数据流中的潜在频繁项集和频繁项集;其次,构建类似频繁模式树(FP-Tree)的压缩频繁模式树(CP-Tree)存储已发现的潜在频繁项集和频繁项集,同时更新CP-Tree树中每个节点生成的对数倾斜时间表中的频繁项计数;最后,通过汇总分析得出在多条数据流中多次出现的且有价值的频繁项集,即协同频繁项集。相比A-Stream和H-Stream算法,MCMD-Stream算法不仅能够提高多数据流中协同频繁项集挖掘的效率,并且还降低了内存空间的使用率。实验结果表明MCMD-Stream算法能够有效地应用于多数据流的协同频繁项集挖掘。  相似文献   

19.
近年来,数据流挖掘一直是国内外研究的热点,频繁项集挖掘又是数据流挖掘中的重要问题。根据数据流无限性和流动性的特点,提出了一种在滑动窗口中挖掘频繁项集的算法FIM-SW,FIM-SW算法主要是采用垂直的数据库表示方法,使用二进制向量表示每个数据项,并利用Apriori性质产生频繁项集。实验结果表明,这种算法显著地提高了挖掘效率。  相似文献   

20.
Multilevel knowledge in transactional databases plays a significant role in our real-life market basket analysis. Many researchers have mined the hierarchical association rules and thus proposed various approaches. However, some of the existing approaches produce many multilevel and cross-level association rules that fail to convey quality information. From these large number of redundant association rules, it is extremely difficult to extract any meaningful information. There also exist some approaches that mine minimal association rules, but these have many shortcomings due to their naïve-based approaches. In this paper, we have focused on the need for generating hierarchical minimal rules that provide maximal information. An algorithm has been proposed to derive minimal multilevel association rules and cross-level association rules. Our work has made significant contributions in mining the minimal cross-level association rules, which express the mixed relationship between the generalized and specialized view of the transaction itemsets. We are the first to design an efficient algorithm using a closed itemset lattice-based approach, which can mine the most relevant minimal cross-level association rules. The parent–child relationship of the lattices has been exploited while mining cross-level closed itemset lattices. We have extensively evaluated our proposed algorithm’s efficiency using a variety of real-life datasets and performing a large number of experiments. The proposed algorithm has outperformed the existing related work significantly during the pervasive performance comparison.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号