首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper firstly presents net-section limit moments for circumferential through-wall and part-through surface cracks at the interface between elbows and attached straight pipes under in-plane bending. Closed-form solutions are proposed based on fitting results from small strain FE limit analyses using elastic–perfectly plastic materials. Net-section limit moments for circumferential cracks at the interface between elbows and attached straight pipes are found to be close to those for cracks in the centre of elbows, implying that the location of the circumferential crack within an elbow has a minimal effect on the net-section limit moment. Accordingly it is also found that the assumption that the crack locates in a straight pipe could significantly overestimate the net-section limit load (and thus maximum load-carrying capacity) of the cracked component. Based on the proposed net-section limit moment, a method to estimate elastic–plastic J based on the reference stress approach is proposed for circumferential cracks at the interface between elbows and attached straight pipes under in-plane bending.  相似文献   

2.
The present work presents plastic limit load solutions for thin-walled branch junctions under internal pressure and in-plane bending, based on detailed three-dimensional (3-D) finite element (FE) limit analyses using elastic–perfectly plastic materials. To assure reliability of the FE limit loads, modelling issues are addressed first, such as the effect of kinematic boundary conditions and branch junction geometries on the FE limit loads. Then the FE limit loads for branch junctions under internal pressure and in-plane bending are compared with existing limit load solutions, and new limit load solutions, improving the accuracy, are proposed based on the FE results. The proposed solutions are valid for ratios of the branch-to-run pipe radius and thickness from 0.4 to 1.0, and the mean radius-to-thickness ratio of the run pipe from 10.0 to 20.0.  相似文献   

3.
The authors have previously proposed plastic limit load solutions for thin-walled branch junctions under internal pressure and in-plane bending, based on finite element (FE) limit loads resulting from three-dimensional (3-D) FE limit analyses using elastic–perfectly plastic materials [Kim YJ, Lee KH, Park CY. Limit loads for thin-walled piping branch junctions under internal pressure and in-plane bending. Int J Press Vessels Piping 2006;83:645–53]. The solutions are valid for ratios of the branch-to-run pipe radius and thickness from 0.4 to 1.0, and for the mean radius-to-thickness ratio of the run pipe from 10.0 to 20.0. Moreover, the solutions considered the case of in-plane bending only on the branch pipe. This paper extends the previous solutions in two aspects. Firstly, plastic limit load solutions are given also for in-plane bending on the run pipe. Secondly, the validity of the proposed solutions is extended to ratios of the branch-to-run pipe radius and thickness from 0.0 to 1.0, and the mean radius-to-thickness ratio of the run pipe from 5.0 to 20.0. Comparisons with FE results show good agreement.  相似文献   

4.
Approximate plastic limit load solutions for pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the FE results.  相似文献   

5.
Plastic collapse of pipe bends with attached straight pipes under combined internal pressure and in-plane closing moment is investigated by elastic–plastic finite element analysis. Three load histories are investigated, proportional loading, sequential pressure–moment loading and sequential moment–pressure loading. Three categories of ductile failure load are defined: limit load, plastic load (with associated criteria of collapse) and instability loads. The results show that theoretical limit analysis is not conservative for all the load combinations considered. The calculated plastic load is dependent on the plastic collapse criteria used. The plastic instability load gives an objective measure of failure and accounts for the effects of large deformations. The proportional and pressure–moment load cases exhibit significant geometric strengthening, whereas the moment–pressure load case exhibits significant geometric weakening.  相似文献   

6.
This paper presents elastic, shakedown and plastic limit loads for 90° elbows under constant internal pressure and cyclic in-plane bending, via finite element (FE) analysis. Effects of the elbow geometry (the bend radius to mean radius ratio and the mean radius-to-thickness ratio) and of the large geometry change are systematically investigated. By normalizing the in-plane bending moment by the plastic limit load solution of Calladine, the shakedown diagram is found to be close to unity up to a certain value of normalized pressure (normalized with respect to the limit pressure) and then to decrease almost linearly with increasing normalized pressure. The value up to which shakedown limit loads remain constant depends on the elbow geometry and the large geometry change effect. Effects of the elbow geometry and the large geometry change on shakedown diagrams are discussed.  相似文献   

7.
In this paper, information on plastic limit loads and both elastic and elastic-plastic fracture mechanics parameters is given for cracked thick-walled pipes with mean radius-to-thickness ratios ranging from two to five. It is found that existing limit load expressions for thin-walled pipes can be applied to thick-walled pipes, provided that they are normalized with respect to the corresponding un-cracked thick-walled pipe values. For elastic fracture mechanics parameters, FE values of the influence functions for the stress intensity factor and the crack opening displacement are tabulated. For elastic-plastic J, it is shown that existing reference stress based J estimates can be applied, provided that a proper limit load for thick-walled pipes is used.  相似文献   

8.
Based on detailed finite element (FE) limit analyses, the present paper provides approximations for plastic limit pressure solutions for plane strain pipes with extended inner axial cracks; axi-symmetric (inner) circumferential cracks; axial through-wall cracks; axial (inner) surface cracks; circumferential through-wall cracks; and circumferential (inner) surface cracks. In particular, for surface crack problems, the effect of the crack shape, semi-elliptical or rectangular, on the limit pressure is quantified. Comparisons with existing analytical and empirical solutions show a large discrepancy for short circumferential through-wall cracks and for surface cracks (both axial and circumferential). Being based on detailed 3D FE limit analysis, the present solutions are believed to be accurate, and thus to be valuable information not only for plastic collapse analysis of pressurised piping but also for estimating non-linear fracture mechanics parameters based on the reference stress approach.  相似文献   

9.
This paper provides effects of reinforcement shape and area on plastic limit loads of branch junctions under internal pressure and in-plane/out-of-plane bending, via detailed three-dimensional finite element limit analysis assuming elastic-perfectly plastic material behaviour. It is found that reinforcement is most effective when (in-plane/out-of-plane) bending is applied to the branch pipe. When bending is applied to the run pipe, reinforcement is less effective when bending is applied to the branch pipe. The reinforcement effect is the least effective for internal pressure.  相似文献   

10.
Steady-state reference rupture stresses were obtained for a range of 90° pipe bends, subjected to internal pressure only, using simplified 2D axisymmetric finite element (FE) models. The bends were considered to be circular in shape and not include any ovality. Creep damage FE analyses were performed to obtain realistic failure lives and to determine the skeletal point rupture stresses, using the material properties, obtained at 640 °C, for a service-exposed CrMoV pipe steel. The effects of the normalised pipe bend dimension on the reference rupture stresses are presented. The results obtained confirm the validity of the use of the steady-state reference rupture stress in life estimation for a wide range of pressurised pipe bend geometries. The life predictions were compared with those of the corresponding straight pipes and their relevance considered.  相似文献   

11.
The advent of Leak-Before-Break (LBB) concept has now replaced the traditional design basis event of the Double-Ended-Guillotine-Break (DEGB) to design the Primary Heat Transport (PHT) system piping of the Pressurised Heavy Water Reactor (PHWR) and Pressurised Water Reactor (PWR). This approach is being adopted to design the PHT system piping of 500 MWe Indian PHWR to be built at Tarapur (Tarapur Atomic Power Plant 3 and 4). The LBB concept basically demonstrates through fracture mechanics analysis that there is negligible chance of any catastrophic break of PHT pipes without prior indication of leakage. There are several steps in this work of LBB qualification, namely, evaluation of loads on the piping components, generation of tensile and fracture properties of PHT pipe base and weld material, determination of leakage size crack (LSC) and the elastic–plastic fracture mechanics (EPFM) and limit load analysis of the piping components with postulated LSC to evaluate the critical load at unstable ductile tearing and the limit load, respectively. The paper deals with the fracture analysis of the straight pipes and elbows of three pipe lines in the PHT system of TAPP 3 and 4. Three crack configurations are considered in the analysis. These are throughwall circumferential crack at the weld location of straight pipe and extrados of the elbow and throughwall axial crack at the elbow crown. In all the cases, necessary factor of safety with respect to the anticipated safe shutdown earthquake (SSE) load and LSC are shown to be more than the minimum required values for LBB qualification.  相似文献   

12.
Some available experimental results for the ductile failure of plates with surface cracks under tension are reviewed. The response of crack driving force, J, and the ligament strain near the local and global limit loads are investigated by performing elastic-perfectly plastic finite element (FE) analysis of a plate with a semi-elliptical crack under tension. The results show that a ligament may survive until the global collapse load is reached when the average ligament strain at the global collapse load, which depends on the uniaxial strain corresponding to the flow stress of the material and the crack geometry, is less than the true fracture strain of the material obtained from uniaxial tension tests. The FE analysis shows that ligament yielding corresponding to the local limit load has little effect on J and the average ligament strain, whereas approach to global collapse corresponds to a sharp increase in both J and the average ligament strain. The prediction of the FE value of J using the reference stress method shows that the global limit load is more relevant to J-estimation than the local one.  相似文献   

13.
In this paper, residual stresses in welded components are discussed and a brief review of weld simulation is presented. The general methodology of the FE analysis methods used for welded sections of steel pipes is explained. FE analyses are performed for two axisymmetric butt welds in stainless steel pipes having a 4-pass or a 36-pass weld in a pipe with a wall thickness of 7.1 or 40.0 mm, respectively. In addition, more FE models with inside radius to wall thickness ratio ranging from 1 to 100 have been analysed to investigate the effect of pipe diameter on residual stresses. Residual axial and hoop stresses are plotted for the considered range of pipe diameters for the two simulated pipe wall thicknesses and the differences are discussed.  相似文献   

14.
Approximate limit and plastic collapse load solutions for un-reinforced mitred bends under internal pressure and under bending are proposed in this paper, based on three-dimensional finite element analysis and approximate solutions for smooth bends. Solutions are given for single- and multi-mitred bends (mainly for single and double segmented bends) with the pipe mean radius-to-thickness ratio (r/t) ranging from r/t = 5 to r/t = 50, and the bend radius-to-mean radius ratio (R/r) from R/r = 2 to R/r = 4. Internal pressure, in-plane bending and out-of-plane bending loads are considered, but not their combination. It is found that the essential features of limit and plastic collapse loads for mitred bends are similar to those for smooth bends, and thus existing solutions for smooth elbows can be used to construct limit loads and plastic collapse for mitred bends.  相似文献   

15.
The limit load and J estimates of a centre cracked plate with an asymmetric crack in the tensile properties mismatched weld were investigated. A limit load expression was derived on the basis of a simplified slip-line field. A good agreement between the predictions of the expression and finite element (FE) results was found for ratios of half-weld width to the crack ligament, H/l, of less than 0.5. The equivalent stress–strain relationship method (ESSRM) was used to predict elastic–plastic J values. Results from FE analyses show that the ESSRM is accurate for the crack with asymmetry in the mismatched weld provided an accurate theoretical or numerical value of the limit load of the same specimen is available. Defect assessment methods are discussed, and it is found that the failure assessment diagram (FAD) of an asymmetrically cracked mismatched weld can be constructed from the equivalent stress–strain relationship for the same mismatched geometry with a symmetric crack. The effect of an asymmetric crack on the FAD may then be covered by the limit load solution for the asymmetrically cracked mismatched weld.  相似文献   

16.
In engineering practice, pipe containing local wall thinning may be subjected to bending load. The existence of local wall thinning on pipe surface impairs the load-carrying capacity of pipe. In order to maintain the integrity of the pipe containing local wall thinning, it is very important to develop a method to evaluate such a pipe with local wall thinning under bending. In this paper, the limit moment of local wall thinning pipe under pure bending is computed employing 3D elastic–plastic finite element analysis. The results show that the limit moment of pipe is affected not only by the width of defect but also by the longitudinal length of defect. When the longitudinal length of defect overpasses some critical value, the results from net-section collapse criterion (NSC) are in very reasonable agreement with the results from finite element analysis. Therefore, the NSC formula can conservatively be used to assess the limit load-carrying capability of local wall thinning pipe under bending.  相似文献   

17.
This paper describes the usage of finite element (FE) analyses results to validate the standard BS7910 assessment procedure for the safe design of cracked square hollow section (SHS) T-, Y- and K-joints. In the study, the actual 3D surface cracks obtained from previous fatigue tests have been included in the FE models. An automatic mesh generation program is then developed and used to produce the failure assessment diagram (FAD) through the J-integral method. The ultimate strength of uncracked SHS joints with reduced load bearing areas have been referenced to derive the plastic collapse loads of cracked SHS joints for the development of FAD. These loads have been validated against the previous experimental results. In comparison with the existing standard BS7910 Level 2A/3A FAD curve and the proposed assessment procedure for circular hollow section joints, it is found that a plastic collapse load with a penalty factor of 1.05 will be sufficient for the safe assessment of cracked SHS T, Y, and K-joints under brace end axial loading.  相似文献   

18.
Abstract

Finite element (FE) simulations of the welding of two high grade steel pipes are described. The first is a P91 steel pipe welded with a similar P91 weld consumable, and the second is a P92 steel pipe welded with dissimilar nickel–chromium based weld consumables. Both welds are multipass circumferential butt welds, having 73 weld beads in the P91 pipe and 36 beads in the P92 pipe. Since the pipes and welds are symmetric around their axes, the FE simulations are axisymmetric, allowing high FE mesh refinement and residual stress prediction accuracy. The FE simulations of the welding of the P91 and P92 pipes comprise thermal and sequentially coupled structural analyses. The thermal analyses model the heat evolution produced by the welding arc, determining the temperature history throughout the FE models. Structural analyses use the computed temperature history as input data to predict the residual stress fields throughout the models. Post-weld heat treatment (PWHT) of both pipes has also been numerically simulated by assuming that the FE models obey the Norton creep law during the hold time period at 760°C. The residual stresses presented here have all been validated by corresponding experimental measurements. Before PWHT, it has been found that, at certain locations in the weld region and heat affected zone (HAZ) in the pipes, tensile hoop and axial residual stresses approach the tensile strength of the material, presenting a high risk of failure. It has also been found that PWHT substantially reduces the magnitude of residual stresses by varying degrees depending on the material.  相似文献   

19.
Large-diameter buried pipeline is widely used because of its energy-saving advantage and high efficiency. In this paper, “L”-type heat pipe network was taken as the research object, which was studied using the flow–heat–solid coupling method. The ANSYS Workbench platform was used to simulate heat transfer and the flow of the medium in the pipe network. The pressure and temperature of the flow field and the temperature, equivalent stress of the solid structure under different conditions were calculated, and the force characteristics of pipe network and elbow under coupled and non-coupled loads were compared. Results show the maximum equivalent stress was located at inner wall surface of the short-arm anchor end. The equivalent stress of the inner wall was larger than that of the outer wall at the same position. The stress of the straight pipe of the pipe network was mainly affected by the temperature of the fluid, whereas the stress of elbow was mainly affected by the pressure. The stress distribution of the pipe network was influenced by the temperature and pressure loads coupled and the coupling effect was stronger with the higher pressure and temperature of the medium, but the coupling effect had its limit.  相似文献   

20.
A recently developed method for 3-D shakedown and limit analyses is evaluated in the present paper. The shakedown and limit loads of a holed plate subjected to biaxial loading are calculated by implementing the upper bound linear matching method into the commercial FE code ABAQUS. A defective pipeline under the combined action of internal pressure and axial tension is also analysed for both shakedown and limit capacities and the results compared with a standard programming method. All the numerical examples confirm the applicability of this procedure to complex 3-D structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号