首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of temperature and concentration on rheological behaviour of freeze dried soursop juice concentrates were investigated using a rheometer over a wide range of temperatures (10–70 °C) and concentrations (10–50 °Brix) at shear rates of 0–400 1/s. The Power law is the best fitted model to the rheological data due to the high value of coefficient of determination (R2 = 0.9989). The soursop juice concentrates exhibited shear thinning or pseudoplastic behaviour with n < 1. The consistency coefficients dependency on temperature and concentration were well described by Arrhenius relationship and exponential relationship respectively. The flow activation energy of soursop juice concentrates were 8.32–30.48 kJ/mol. The superposition technique with Power law model sufficiently modelled the overall rheological characteristics of soursop juice concentrates into a single master curve using shift factors based on double shifting steps with R2 = 0.9184. This technique also showed that the soursop juice concentrates increases in viscosity and pseudoplasticity behaviour with concentration.  相似文献   

2.
The steady shear flow properties of dispersions of a new potential hydrocolloid, sage seed gum (SSG), were determined as a function of concentration (0.5–2% w/w), and temperature (20–50 °C). SSG dispersions exhibited strong shear-thinning behavior at all conditions tested, which was even more pronounced than commercial hydrocolloids like xanthan, guar gum and locust bean gum. Different time-independent rheological models were used to fit the experimental data, although the Herschel–Bulkley model (H–B) was found the best model to describe steady shear flow behavior of SSG. An increase in gum concentration led to a large increase in yield stress and consistency coefficient values, whereas there was no definite trend with an increase in temperature. On the other hand, the above-mentioned increases in concentration and temperature did not yield a clear evolution of the shear-thinning characteristics of SSG dispersions. An Arrhenius-type model was also used to describe the effect of temperature. The activation energy (Ea) appeared in the range of 3949–16384 J/mol, as concentration increased from 0.5 to 2%, at a shear rate of 100 s−1. The yield stress values estimated by viscoplastic rheological models were much higher than the data determined by stress ramp method. Apparent viscosity of SSG surpassed many commercial hydrocolloids such as guar gum, locust bean gum, Tara gum, fenugreek gum and konjac gum at the same conditions, which suggest it as a very good stabilizer in food formulations.  相似文献   

3.
The rheological behaviour of Yankee pineapple juice was examined for the effect of ultraviolet (UV) irradiation (53.42 mJ/cm2) and compared with untreated juice and a thermally pasteurized (80 °C for 10 min) juice. A rheological test was performed on all types of juice in the temperature range 5 °C to 25 °C using a concentric cylinder rheometer at a shear rate range of 10–290 s−1. The comparative analysis found that the best flow curves were described by the Bingham model with an initial shear stress. The entangled pulps in the juices prevented free flow at zero shear rate. There was no significant variation between the plastic viscosities of the untreated and UV-irradiated juice at all temperatures. The activation energy (Ea) of the untreated, UV-irradiated and thermally pasteurized juice was 6.80, 8.19 and 8.50 kJ/mol respectively.  相似文献   

4.
Dispersions of cross-linked starch in full fat milk, taken as models of custard model systems, have been characterized by different rheological means: viscoelastic measurements, classical flow measurements and ‘vane’ rheometry. From viscosity measurements, the flow behaviour was described within the shear rate range 0.01–100 s−1. The flow curves were fitted using the Herschell–Bulkley equation over the shear rate range 0.1–100 s−1 while a deviation was found towards the low shear rate range, making the determination of the yield stress non realistic. Instead, measurements with the ‘vane’ device in low shear conditions provided a way to estimate the yield stress, at rest and after shearing, but the entire flow curve was not described. From the viscoelastic measurements at low strain amplitude, the mechanical spectra were obtained. Linearity tests beyond the linearity limits provided the critical stress corresponding to the G′–G″ cross-over. The parameters obtained from these different rheological methods are discussed.  相似文献   

5.
The objective of this study was to investigate the effect of concentration and temperature on the rheological properties of soy proteins (SP) and micellar casein (MCN) systems. Individual and mixed (1:1) protein systems of 2–15% concentration were prepared and heat treated for 5 min at 40–90 °C. After cooling to 20 °C, their rheological properties were determined using steady-shear rheology. Zeta potential and particle size measurements were also conducted. Both proteins were negatively charged under all experimental conditions, but the absolute values of zeta potential and thus the stability of the protein solutions decreased with temperature and concentration. For SP solutions, viscosity and apparent yield stress increased with concentration. Shear thinning behavior was prevalent, becoming more pronounced with increasing concentration. Heat treatments at T ≥ 80 °C induced glycinin denaturation, followed by aggregation and network formation when C ≥ 7.5%. Heat treatment did not significantly affect viscosity of MCN systems, while increasing concentration resulted in a significant increase in apparent viscosity and apparent yield stress. Most MCN systems exhibited Newtonian flow behavior, with the exception of systems with C ≥ 12.5% treated at T ≥ 80 °C, which became slightly shear thickening. Mixed SP–MCN systems mimicked the behavior of SP, with most values of rheological parameters intermediate between SP and MCN-only systems. Mixtures of 7.5–12.5% concentration treated at 90 °C displayed local phase separation, low viscosity and apparent yield stress, while 15% mixtures treated at 90 °C showed protein aggregation and incipient network formation. The data generated in this study can be used to develop a range of protein based products with unique flow characteristics and storage stability.  相似文献   

6.
Flow behavior of vegetable-based infant purees was analyzed at different temperatures (5–65 °C) giving particular attention to their time-dependent properties in a shear rate range (5–200 s−1). Power law model parameters describing flow behavior of samples depended on kind of infant puree, its water content and measurement temperature. Arrhenius model was used to explain temperature effect on apparent viscosity at 50 s−1. Infant purees exhibited thixotropic behavior for all temperatures tested. For the same temperature, differences in hysteresis loop magnitudes were observed among purees, being more noticeable at lower temperatures. Two models were used to describe the time-dependent behavior, namely Weltman model, and second-order structural kinetic model. For all infant purees, the initial shear stress and the extent of thixotropy increased and decreased significantly with increases in shear rate and temperature. The breakdown rate of puree associations also accelerated at higher shear rates, but no trend was observed with temperature.  相似文献   

7.
The rheological properties of chestnut flour (CF) doughs with different particle size were studied using a controlled stress rheometer. The mixing curves and heating–cooling cycle responses were previously obtained from the Mixolab® apparatus. Shear measurements (0.1–10 s−1), oscillation measurements (1–100 rad s−1 at 0.1% strain), temperature sweep (30–100 °C) to achieve the gelatinization temperatures and creep-recovery tests (loading of 50 Pa for 60 s) were conducted in the rheometer. Mixolab® showed that CF samples with smaller particle size needed more water absorption to reach a consistency of 1.1 Nm. Shear viscosities of CF doughs exhibited a Newtonian plateau at low shear rate and shear thinning behaviour at higher shear rate. Apparent viscosity increased with increasing average particle size and steady-flow curves were fitted using Cross model. Oscillatory measurements of CF dough showed that the storage modulus, G′, was greater than loss modulus, G″, for all samples in the tested angular frequency range. CF samples with smaller particle size presented lower G′ and G″ values. Creep-recovery tests of these flours showed that elasticity was limited and unrecoverable proportion was very high. Gelatinization temperatures measured using Mixolab® and rheometer were practically coincident.  相似文献   

8.
Rheological studies of Cedrela odorata gum aqueous dispersions demonstrated viscoelastic properties. Mechanical spectra derived from small amplitude oscillatory shear (SAOS) results support the onset of gel-like structure at given conditions (10% w/v, 20 °C). The increase in the storage and loss moduli, along with the drop in their frequency dependence, observed at higher gum concentrations, indicates a slower relaxation mechanism, which may be related to the increasing number and structural complexity of transient junction zones among macromolecules. The transition from gel-like to sol-like structure, at higher temperature, was detected from SAOS results. The flow behaviour of the aqueous gum dispersions under steady shear is highly non-Newtonian and can be modelled by the Sisko equation. The Cox–Merz rule was found to fail at critical gum concentration for the onset of gel-like behaviour and also at a temperature slightly above the gel–sol transition. C. odorata gum aqueous dispersions may have interesting applications as stabilisers of emulsions and suspensions on account of their rheological behaviour.  相似文献   

9.
Whey protein concentrate is the main source of globular proteins in food products which are principally used as emulsifying, foaming and gelling ingredients. These whey proteins are commonly used in powder form obtained by a spray-drying process. It is well known that β-lactoglobulin, the major protein component in whey, is greatly affected by heat treatments, with consequences on its adsorption properties at fluid–fluid interfaces. This study concerned four whey protein powders obtained using spray-drying at four different air inlet temperatures (from 170 to 260 °C), leading to different levels of protein solubility, denaturation and end-use properties. After evaluation of the protein denaturation by HPLC, the emulsifying properties were studied through particle size parameters and rheological properties in relation with spray-drying parameters. Our results indicated that oil-in-water emulsions, stabilized by 5% (w/w) protein samples, exhibited a shear-thinning flow behaviour, and the harsher the spray-drying conditions (the higher the protein denaturation), the less viscous were the emulsions. The apparent viscosity of emulsions measured at 20 °C and 50 s−1 shear rate was around 0.08 Pa s when containing whey proteins before drying, and around 0.05–0.018 Pa s after drying at air inlet temperatures from 170 to 260 °C. These differences in emulsion rheological properties were related to particle size effects, in regards to analysis of particle size distributions which showed a finer emulsion according to spray-drying intensity. Our results will be presented and discussed in terms of optimization of spray-drying process relative to globular protein surface activity.  相似文献   

10.
Steady shear flow behavior of basil seed gum (BSG) was investigated between 0.5% and 2% (wt/wt) concentration and temperatures of 5-85 °C. BSG showed shear thinning behavior at all concentrations and temperatures. The Herschel-Bulkley model was employed to characterize flow behavior of BSG solutions at 0.1-1000 s−1 shear rate. The pseudoplasticity of BSG increased markedly with concentration. Flow behavior of 1% BSG indicated a higher viscosity of this gum at low shear rates compared to xanthan, konjac and guar gum at similar concentration. The activation energy of BSG quantified using an Arrhenius equation increased from 4.9 × 103 to 8.0 × 103 J mol−1 as concentration changed from 0.5% to 2% wt/wt. This indicated a heat-resistant nature of BSG. Increasing the apparent viscosity of BSG as temperature increase from 60 °C showed a sol-gel behavior of BSG based on dynamic oscillatory measurements. The static yield stress was obvious between shear rates 0.001-0.1 s−1 (9.98 Pa for 1% BSG at 20 °C). The existence of the yield stress, high viscosity at low shear rates and pseudoplastic behavior of BSG make it a good stabilizer in some food formulations such as mayonnaise and salad dressing.  相似文献   

11.
The rheological properties at small (oscillatory shear) and large (uniaxial compression) deformations of heat-induced gels (80 °C for 20 min, pH 7.3) containing 25% rennet casein (RCN), 2.5% disodium phosphate and 0%, 2.3% or 6.3% of whey protein isolate (WPI) were measured for samples cooked in a torque-rheometer at mixing speeds within a range of 20–200 rpm (shear rates: ∼15–230 s−1). In addition, microstructure analyses were performed, separately staining RCN and WPI, by Confocal Scanning Laser Microscopy (CSLM). Both small and large deformation tests indicated that increasing addition of WPI prior to the cooking process of RCN resulted in gels exhibiting higher storage and deformability moduli than WPI-free samples. Increasing shear rates during cooking also affected the rheological properties of RCN–WPI gels, and stronger gels were formed as the shear rate during cooking was increased. Despite the data dispersion among replicates, the effect of shear rate on gel strength were evident for RCN gels with 6.3% WPI and relatively clear for gels with 2.3% WPI; however, the trend was uncertain for WPI-free RCN gels. Possible explanations for this observation are that when increasing WPI levels in the presence of RCN and heat, disulfide-thiol exchange reactions between denatured WPI and κ-casein (κ-CN) are increased and possibly promoted by shear rate, resulting in stronger and more cross-linked gel structure. CSLM results were not conclusive to support this hypothesis.  相似文献   

12.
The present work reports the optimisation of enzyme interesterification reaction of rice bran oil (RBO) and refined, bleached, deodorized, palm olein (RBDPO) blend using immobilized 1,3-specific lipase, to improve the kinematic viscosity and heat transfer coefficient of oil, important for characterising heat transfer during the frying process. Four variables, namely RBO (20–80%) in RBO–RBDPO blend, reaction temperature (25–65 °C), enzyme concentration (1–13%, w/w) and reaction time (1–13 h) were selected and optimised using response surface methodology (RSM) coupled with central composite rotatable design (CCRD). The optimisation results predicted that optimum reaction conditions for preparing enzyme interesterified oil, having minimum kinematic viscosity (2.63 × 10−6 m2 s−1) and maximum heat transfer coefficient (262.0 Wm−2 °C−1) were at 62% RBO, temperature 65 °C, enzyme concentration 10% (w/w) and time 6.4 h. The predicted values were validated experimentally and corroborated with DSC melting profile and triacylglycerol molecular species data. This investigation could help snack food industries to develop suitable oils for frying operations.  相似文献   

13.
The dynamic rheological and microstructural properties of rennet-casein-based imitation cheeses containing various concentrations of potato starch were investigated using a stress-controlled rheometer and confocal laser scanning microscopy. The influence of added starch on the size of the oil droplets in the imitation cheeses was also examined. Imitation cheeses with 0–15% protein replaced by starch were processed in a Rapid Visco Analyser (RVA) at 90 °C for 10 min at a shear rate of 800 rev/min and were then evaluated using oscillatory shear measurement and a temperature sweep (20–90 °C). The storage modulus (G′) of the rennet casein imitation cheeses increased abruptly at added starch concentrations >4%. In the temperature range 20–90 °C, tan δ of the imitation cheeses decreased with increasing starch concentration and was <1 at added starch concentrations >4%. A binary continuous phase consisting of a protein phase and a starch phase was observed in systems containing >4% starch, whereas the starch was dispersed in the protein matrix as small particles of irregular shapes at added starch concentrations ≤4%. As the dispersed phase, the size of the oil droplets increased with starch addition in the imitation cheeses. The marked increase in G′ and the reduction in tan δ may be attributed to the formation of a binary continuous separated phase structure in imitation cheeses containing added starch that is driven by thermodynamic incompatibility between rennet casein and starch.  相似文献   

14.
A.J. Sandoval 《LWT》2007,40(1):43-48
A capillary rheometer was used to determine the rheological behaviour of corn starch with moisture contents ranging from 27 to 37 g/100 g (wet basis), at temperatures of 85, 100 and 120 °C, and true wall shear rates ranging from 100 to 2000 s−1. It was found that the rheology of the system followed a pseudoplastic law and the interactions between the processing variables such as temperature, moisture content and shear rate were well correlated with viscosity for the experimental range of conditions considered in this work. The apparent viscosity decreased as moisture content, temperature and shear rate increased in agreement with previous work.  相似文献   

15.
The present study involves the use of non-specific enzyme pullulanase (from Bacillus acidopullulyticus) to remove galactose residues from guar galactomannan to obtain modified guar galactomannan mimicking the functional properties of locust bean gum. The modified guar galactomannan blended with xanthan exhibited the rheological behaviour of elastic modulus (G′) greater than viscous modulus (G″) with a decrease in tan δ value similar to locust bean gum/xanthan blend. Also a twofold increase in the magnitude of elasticity compared to xanthan alone suggested the synergistic interaction with formation of three dimensional networks. The modified guar galactomannan with galactose content of 21% and M:G ratio 1:3.8, almost akin to locust bean gum, showed a better interaction with xanthan. Dynamic stress sweep study of modified guar galactomannan/xanthan blend with increased yield stress of 800 dynes/cm2 also indicated the synergistic behaviour. Modified guar galactomannan also revealed the maximum synergistic interaction with xanthan at a mixing temperature of 60 °C than at 20 °C, 30 °C, 40 °C and 50 °C, respectively. Modification of guar galactomannan by pullulanase is an alternative route to produce galactose-depleted guar galactomannan with enhanced rheological functionalities on co-gelation with xanthan, as a cost effective replacement to locust bean gum.  相似文献   

16.
The rheological and functional properties of gelatin from the skin of bigeye snapper (Priacanthus hamrur) fish were assessed. The protein content of dried gelatin was 94.6% and moisture content was 4.2%. The amino acid profile of gelatin revealed high proportion of glycine and imino acids. The bloom strength of solidified gelatin was 108 g. The average molecular weight of fish skin gelatin was 282 kDa as determined by gel filtration technique. The emulsion capacity (EC) of gelatin at a concentration of 0.05% (w/v) was 1.91 ml oil/mg protein and with increase in concentration, the EC values decreased. The gelling and melting temperatures of gelatin were 10 and 16.8 °C, respectively as obtained by small deformation measurements. The flow behavior of gelatin solution as a function of concentration and temperature revealed non-Newtonian behavior with pseudoplastic phenomenon. The Casson and Herschel–Bulkley models were suitable to study the flow behavior. The yield stress was maximum at 10 °C with the concentration of 30 mg/ml. Thermal gelation behavior of threadfin bream (Nemipterus japonicus) mince in presence of different concentration of gelatin was assessed. Gelatin at a concentration of 0.5% yielded higher storage modulus (G′) value than control. Frequency sweep of heat set gel with gelatin revealed strong network formation.  相似文献   

17.
The rheological properties evolution, during the organogelation by cooling of candelilla wax (CW) solution in safflower oil, was studied using computational fluid dynamics (CFD). A simulated storage modulus (G′) model agreed satisfactorily with experimental observations. The gelation of 3% CW solutions was done using static conditions during the whole process (90–5 °C), or by applying a shear rate (180, 300 and 600 s−1) during cooling from 90 °C to 52 °C and then continuing the cooling under static conditions up to the final temperature (i.e. 5 °C). The proposed model predicts G′ evolution as a function of temperature, and considers the final torque (Γf) of the sheared stage as an inductor of molecular flow alignment. Predictions revealed that the final solid-like component (i.e. G′) increases as the shear rate increases up to a maximum for a shear rate of about 400 s−1. Then, final G′ value diminishes gradually, probably due to the destruction of microstructures that generate the gelation. The model was validated by graphical methods and variance measures. The results demonstrate the potential of CFD to allow the development of a model linking process variables (i.e. cooling and shearing) and rheological properties. This model can be successfully applied for process control purposes and for the design of organogels with predefined properties.  相似文献   

18.
The rheological behaviour and microstructural properties of rehydrated cell wall particle (CWP) dispersions and CWP–xanthan mixtures were investigated using small-deformation rheology and confocal laser scanning microscopy. Dispersions with two different CWP particle sizes were used. CWP dispersions were found to be elastic with a weak-gel type behaviour. The elastic modulus was a function of the CWP concentration cp and depended on the particle size of the CWP. The addition of xanthan to the CWP dispersions was found to affect the rheological behaviour of the CWP–xanthan mixtures at low CWP concentration (cp ≤ 1 wt%), due to the increase in the viscoelastic properties of the continuous phase. At high CWP concentrations (cp ≥ 3%), the effect of xanthan on the rheological behaviour of the CWP–xanthan mixtures was marginal, as the viscoelastic behaviour of the mixtures was dominated by the CWP particle network, with xanthan molecules entrapped in the interstitial voids. However, at intermediate CWP volume fractions (e.g. at a CWP concentration cp = 2%) both xanthan and CWP phases contributed to the viscoelastic behaviour of the CWP–xanthan mixtures.  相似文献   

19.
Rheological behavior of date syrup is an important factor affecting the efficiency of sugar production and refining processes such as boiling, crystallization, separation and pumping. A rotational viscometer was used to characterize the flow behavior of date syrup solution at four different temperatures (20 °C, 40 °C, 60 °C and 80 °C) and four concentrations (17, 24, 31 and 39 °Brix). The samples were subjected to a programmed shear rate increasing from 10 to 100 s−1 in 2 min, held constant at 100 s−1 for 10 min and linearly decreasing to 10 during 2 min. The power law model was fitted to shear stress vs. shear rate data to obtain the consistency coefficient (m) and the flow behavior index (n). Both m and n were sensitive to changes in temperature and concentration. The apparent viscosity increases with increasing concentration of date syrup and a decrease in temperature.  相似文献   

20.
The influence of the addition of NaCl (0.6, 1.2, 1.8%, w/w), sucrose (0.6, 1.8, 3.4, 5.0%, w/w), chestnut starch (5.0, 10.0, 15.0%, w/w) and NaCl–sucrose mixtures (0.6–0.6, 1.8–1.8%, w/w) on the rheological properties of chestnut flour (CF) doughs were studied using a controlled-stress rheometer. Mixing and complete tests were achieved by the Mixolab® apparatus. Shear (0.01–10 s−1), oscillation (1–100 rad s−1), temperature sweep (30–100 °C) and creep-recovery (loading of 50 Pa) measurements were performed. Steady-flow curves exhibited a Newtonian plateau at <0.1 s−1 that was shifted to lower shear rates with the additives. Apparent viscosities were satisfactorily fitted using Cross model. Moduli values of storage and loss decreased, at constant angular frequency, with increasing additives. Gelatinization temperatures were slightly modified. Creep-recovery data, fitted using Burgers model, showed that the elasticity was low (23.0%) and doughs with chestnut starch presented the highest recoverable proportion (45.6%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号