首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laboratory component tests play an important role in the development of life assessment procedures for high temperature crack initiation and growth. Thus, the working programme of the project BE 1702 HIDA, which addressed the validation, expansion and harmonisation of existing procedures for high temperature defect assessment, included a comprehensive experimental programme with feature tests of components as its core. Because of their relevance for the high temperature industry, P91 and P22 were included in HIDA among five materials. This paper presents laboratory creep crack growth tests of P91 and P22 pipe bends, discusses the test experience and draws some conclusions for laboratory component tests in general. The components were prepared with spark-eroded notches at the outer surface. The test temperature was 625°C for P91 and 565°C for P22.  相似文献   

2.
Creep crack growth (CCG) tests on two pressure vessel steels, P22 (2.25Cr1Mo) and P91 (9CrMoVNb) were carried out in two European Commission supported projects: SMT 2070 ‘SOTA’ and BE1702 ‘HIDA’.Tests in the SOTA project were conducted on the all-weld and cross-weld compact tension (CT) specimens; in the case of cross-weld specimens the electrical discharge machined (edm) notches were placed at various positions inside the HAZ to study the effect of notch position on CCG characteristics. These tests were conducted at 550°C (P22) and 600°C (P91).Tests in the HIDA project were carried out on the base metal and cross-weld CT specimens; in the case of cross-weld specimens the edm notches were placed in the centre of the HAZ. These tests were carried out at higher temperatures than those in the SOTA project i.e. at 565°C (P22) and 625°C (P91). In this project CCG tests were also carried out on large seam-welded pipes (feature specimens) with edm notches positioned in the base metal and in the centre of HAZ.The base and weld metals used in both projects were from the same cast/pedigree. This paper discusses the findings of the two projects and implications for crack growth in the weldments of these two steels.  相似文献   

3.
Abstract

As a part of the efforts for developing a reliable assessment procedure for crack growth in high temperature components, crack growth tests at various loading conditions were performed on Grade 91 steel. 1T compact tension specimens of 20 mm thickness were kept under constant tensile load at 600°C, but periodically unloaded or reversely loaded to compressive side to observe these effects on deformation behaviour as well as crack growth behaviour. It was found that periodical reversed loading accelerates crack growth due to re-acceleration of inelastic deformation during load holding, but its extent was not as large as predicted by creep J-integral in a conventional way. The predictions were improved by introducing an additional parameter to take account of creep damage recovery which was caused by the excursion to compressive load.  相似文献   

4.
Crack initiation and crack growth under creep fatigue conditions were experimentally determined on a bainitic turbine rotor steel (30CrMoNiV4-11) and a martensitic pipe steel (X10CrMoVNb9-1). Side grooved compact tension (CT) specimens with 25 and 50 mm thickness as well as double edge notch tensile (DENT) specimens with 15 and 60 mm thickness have been tested in order to observe possible influences of geometry and thus to check the transferability of the specimen test results to the behavior of components.The creep fatigue crack test results can be described with the usual fracture mechanics parameters. A modified two-criteria-method can be used to estimate the crack initiation under creep fatigue conditions. The creep fatigue crack growth can be calculated from the accumulation of fatigue crack growth which is described by the Forman-law and creep crack growth which is described by the C*-parameter.  相似文献   

5.
Creep crack growth (CCG) has been studied for ex-service weld metal of 2.25Cr1Mo (P22). The testing was conducted at a temperature of 550°C and prior to testing, the material had been exposed to high temperature service for 110 000 h at 530°C. The results show a marked effect of the service exposure on the CCG properties of the material when compared to similar testing performed on a new material. The CCG rate was higher by a factor 3.1 in the service-exposed material, which should be compared to the model value of 3.2 based on the relations between the elongation values. The consumed deformation capacity was also estimated with the omega model for tertiary creep. In this case, an enhanced growth rate of 2.4 was obtained. Within a distance of about 10 mm in front of the propagating cracks, the number of creep cavities was significantly higher than in the surrounding material. The variation of the density of cavities as a function of distance from the crack tip was successfully modelled.  相似文献   

6.
A programme of cyclic mechanical testing of a 316 stainless steel, at temperatures of up to 600 °C under isothermal conditions, for the identification of material constitutive constants, has been carried out using a thermo-mechanical fatigue test machine (with induction coil heating). The constitutive model adopted is a modified Chaboche unified viscoplasticity model, which can deal with both cyclic effects, such as combined isotropic and kinematic hardening, and rate-dependent effects, associated with viscoplasticity. The characterisation of 316 stainless steel is presented and compared with results from tests consisting of cyclic isothermal, as well as in-phase and out-of-phase thermo-mechanical fatigue conditions, using interpolation between the isothermal material constants to predict the material behaviour under anisothermal conditions.  相似文献   

7.
The experimental programme of the EC supported project (SMT 2070) SOTA aimed at addressing a technical and industrial need to provide guidelines for creep crack growth (CCG) testing and data analysis of weldments. Mechanical and creep properties were determined on two pressure vessel steels of P22 (2.25Cr1Mo) and P91 (9Cr1MoVNb). The specimens were taken from pipe welds for weld metal (WM) tests, and simulated heat affected zone (HAZ) material for the HAZ tests.The CCG tests were carried out on cross-weld compact tension (CT) specimens machined out from weldment of pipes. The tests were done at 550 and 600°C on P22 and P91 materials, respectively. The CT specimens were notched using electrical discharge method, for a sharp starter crack. This method of initiating sharp starter crack was chosen to make sure that all partners will test specimens with starter crack location as specified in the work programme to study crack initiation and growth in WM and HAZ (both in the centre and type IV region). The CCG tests were carried out following the ASTM E1457-92 [ASTM E1457-92, Standard test method for measurement of creep crack growth rates in metals, ASTM, Philadelphia, PA 19103, USA]. The partners assessed their data and sent both assessed and their raw data to be further assessed centrally. All the data from partners were analysed and compared with those of partners' own assessed data.The present paper reports on the analyses of CCG data obtained in the programme including six laboratories from six European countries. The programme addresses the differences and difficulties in testing and the assessment of weldments, and provides guidelines for harmonisation of testing procedures for reliable data production for remanent life assessment of plants with welded components.  相似文献   

8.
The results of damage mechanics finite element analyses have been used to estimate the initiation and growth of type IV cracks in a series of internally pressurised circumferential pipe welds, in main steam pipelines made of 1/2CrMoV steel. The material properties used, for the various zones of new, service-aged and repaired welds, were produced from creep test data at 640°C. Damage distributions and accumulation with time within the HAZ are presented, from which the crack initiation times and positions for these welds, under a closed-end condition, and with additional axial (system) loading, were identified. By investigating the propagation of damage through the wall thickness, the remaining lives of the various weld types were estimated. The method provides a means for predicting the initiation and growth of type IV cracks in these CrMoV weldments, and for estimating the length of time a weld can safely be left in service, after damage, or type IV cracking, is identified during inspection.  相似文献   

9.
Abstract

Experimental creep crack growth data are generally obtained by following standard methods such as ASTM E1457-07 and subsequently characterised using the C* parameter. These data are then used in assessment procedures, such as R5, together with reference stress estimates of C* in the component, to predict creep crack growth behaviour. Some modifications to the ASTM E1457 creep crack growth testing and analysis methods have already been proposed following a previous analysis of data from long term creep crack growth tests on type 316H parent material. This paper reports the results of creep crack growth tests on type 316H heat affected zone material at 550°C using compact tension (CT) specimens manufactured from non-stress relieved thick section butt welds. It is shown that interpretation of the data from these weldment tests is complicated by both the discontinuous nature of the cracking process and the presence of significant residual stresses in the CT specimens. Further modifications to creep crack growth testing and analysis methods are proposed to address difficulties arising from the discontinuous nature of the cracking process, and further work is identified to investigate the influence of the residual stresses present in the specimens on the observed crack growth behaviour.  相似文献   

10.
To assess creep crack initiation on components, it is necessary to consider the stresses at the crack tip as well as in the remaining ligament or farfield region. For that aim the Two-Criteria-Diagram was established. The method was proven by a large number of creep crack initiation results from small and large scale specimens as well as components. In this paper some practical aspects for using the Two-Criteria-Diagram are described. A code of practice for the use of Two-Criteria-Diagram for creep and creep fatigue loading is given. The extension to the latter and the limits of applicability are discussed. The determination of crack initiation in a cast steel containing defects is described as an example showing the advantages of the method for engineering applications.  相似文献   

11.
Microstructural response of AISI 316L stainless steel to laser peening (LP) was examined by means of optical microscopy (OM) and transmission electron microscopy (TEM) in order to analyze the effects of LP on hydrogen-induced cracking (HIC) resistance. Depth profiles of near-surface microhardness and surface compressive residual stress (CRS) of LP treated specimens were presented respectively. Slow strain rate tensile tests were performed on the hydrogen-charged samples and their corresponding stress-strain curves as well as fracture morphologies were finally investigated in detail. The results demonstrated that LP induced a grain refinement effect on the treated surface while a maximum refining rate of 56.18% was achieved at the laser power density of 10 GW/cm2. The near-surface microhardness also exhibited an attenuation trend with the increasing depth. The surface CRS positively correlated with power density before it reached a threshold value. A special U-shaped dislocation tangle band was observed in the LP treated specimen which served as hydrogen trapping sites. The LP treated samples exhibited better toughness after hydrogen charging from both macro mechanical properties and micro fracture morphologies. LP-induced grain refinement and CRS are believed to be the main contributing factors towards inhibiting the diffusion of hydrogen atoms which ultimately leads to the reduction of the hydrogen embrittlement sensitivity of AISI 316L stainless steel.  相似文献   

12.
Creep crack growth tests have been carried out on compact tension (CT) specimens machined from a P91 weldment. Four of these specimens were cut from the parent material side of the weld and another seven specimens were cut across the weld. For the cross-weld specimens, starter cracks were positioned into (or close to) the Type IV region. The creep tests were carried out under constant loads, at 650 °C. The results obtained showed that, the creep crack growth rates for parent material specimens are about ten times lower than those for the cross-weld specimens and that the scatter in the data is relatively high. In this respect, the accuracy of the crack tip location, in the cross-weld CT specimens, plays an important role. Finite Element (FE) analyses were carried out, on notched bar and CT models, using damage mechanics material behaviour models. These analyses were used to estimate the triaxial stress factor, α, for the parent material (PM), the weld metal (WM) and the heat affected zone (HAZ). FE analyses were then used to predict the creep crack growth in the CT specimens. Results from the FE analyses for both the PM and the cross-weld CT specimens were in good agreement with the corresponding experimental results. The effect of the potential drop versus crack length calibration on the calculated C* values was also investigated.  相似文献   

13.
The fatigue crack growth rate of warm-rolled AISI 316 austenitic stainless steel was investigated by controlling rolling strain and temperature in argon and hydrogen gas atmospheres. The fatigue crack growth rates of warm-rolled 316 specimens tested in hydrogen decreased with increasing rolling temperature, especially 400 °C. By controlling the deformation temperature and strain, the influences of microstructure (including dislocation structure, deformation twins and α′ martensite) and its evolution on hydrogen-induced degradation of mechanical properties were separately discussed. Deformation twins deceased and dislocations became more uniform with the increase in rolling temperature, inhibiting the formation of dynamic α′ martensite during the crack propagation. In the cold-rolled 316 specimens, deformation twins accelerated hydrogen-induced crack growth due to the α′ martensitic transformation at the crack tip. In the warm-rolled specimens, the formation of α′ martensite around the crack tip was completely inhibited, which greatly reduced the fatigue crack growth rate in hydrogen atmosphere.  相似文献   

14.
Hydrogen solubility and diffusion in Type 304, 316L and 310S austenitic stainless steels exposed to high-pressure hydrogen gas has been investigated. The effects of absorbed hydrogen and strain-induced martensite on fatigue crack growth behaviour of the former two steels have also been measured. In the pressure range 10–84 MPa, the hydrogen permeation of the stainless steels could be successfully quantified using Sieverts' law modified by using hydrogen fugacity and Fick's law. For the austenitic stainless steels, hydrogen diffusivity was enhanced with an increase in strain-induced martensite. The introduction of dislocation and other lattice defects by pre-straining increased the hydrogen concentration of the austenite, without affecting diffusivity. It has been shown that the coupled effect of strain-induced martensite and exposure to hydrogen increased the growth rate of fatigue cracks.  相似文献   

15.
This paper examines several methods for assessing experimental creep and fatigue crack growth data obtained on P22 (2.25Cr1Mo) and P91 (9Cr1MoVNb) axially notched, seam-welded pipes tested at 565 and 625 °C, respectively [Creep crack growth of seam-welded P22 and P91 pipes with artificial defects—part I: experimental study and post-test metallography. Second International HIDA Conference, Advances in Defects Assessment in High Temperature Plant, MPA, Stuttgart, Germany, 4–6 October, 2000]. The overall objective of this work is to identify the nature of any correlation between component and conventional testpiece creep crack growth rates and thereby provide a supplementary tool for structural integrity analysis. Creep crack growth rate of the notch located in the heat-affect-zone of the weld was assessed in terms of both stress intensity factors, KI, and the C*-integral. To estimate the C*-integral, reference stresses were developed by deriving limit load solutions which reconcile the different collapse loads of the axially notched pipes. Both minimum and average creep rate laws were utilised in the analysis to accommodate the strain rate in the C* relation. Each test was examined independently, but the general conclusion from each analysis was the same, in that C*-integral, rather than the stress intensity factor, gave better correlation with respect to conventional data generated using compact tension (CT) specimens. The assessment of creep crack growth demonstrates one particular aspect of interest. In terms of the C* based correlation of creep crack growth rates, the analysis was found to be relatively independent of the stress state and correlates well with CT specimen data when appropriate reference stresses are used. In addition, cracking in the tested pipes was observed to occur between plane stress and plane strain conditions, inferring that both creep ductility and ligament straining contribute towards the failure mechanism.  相似文献   

16.
In steam turbine casing made of cast steel of type 0.6Cr0.5Mo0.25V ( SN 42 2744), which run about 25% over designed life, several crack defects were found. The most serious case was represented by a crack in valve chest, which reached nearly up to one half of wall thickness. In spite of this it was necessary to operate the turbine for some time. The aim of this contribution is to describe procedures used for assessment of safe residual life.Material data necessary for this life assessment were evaluated during research of material properties of another steam turbine casing made of the same type steel whose operating time was finished after 1.23×105 h. The mentioned material data are also presented.  相似文献   

17.
To contribute to the development of improved methods for assessing possible thermal fatigue damage in nuclear plant piping systems, a unique set of crack growth data has been generated for tubular test pieces in 316L(N) stainless steel subjected to cyclic thermal loads in a specially designed rig. By accurate modelling of the thermal loads and non-linear material behaviour using the finite element method, it was possible to reliably estimate the number of cycles to initiation, using standard isothermal fatigue life curves. To simulate crack growth, an engineering method was applied using published K solutions for semi-elliptical surface cracks and via 3-D elastic–plastic cracked-body analysis of selected scenarios. It was established that conservative estimates of the thermal fatigue crack growth can be obtained using the engineering model in conjunction with an upper bound fatigue crack growth law.  相似文献   

18.
The effect of boron and nitrogen on the microstructure evolution in heat affected zone (HAZ) of 9Cr steel during simulated heating and on the Type IV fracture in welded joints has been investigated at 650 °C. Gr.92 exhibits a significant decrease in time to rupture after thermal cycle to a peak temperature near AC3, while the creep life of Gr.92N, subjected to only normalizing but no tempering, and 9Cr-boron steel is substantially the same as that of the base metals. In Gr.92 after AC3 thermal cycle, very few precipitates are formed along PAGBs in the fine-grained microstructure. In the P92N and 9Cr-boron steel after AC3 heat cycle, on the other hand, not only PAGBs but also lath and block boundaries are covered by M23C6 carbides in the coarse-grained microstructure. It is concluded that the degradation in creep life in Gr.92 after the AC3 thermal cycle is not caused by grain refinement but that the reduction of boundary and sub-boundary hardening is the most important. Soluble boron is essential for the change in α/γ transformation behavior during heating and also for the suppression of Type IV fracture in welded joints. Newly alloy-designed 9Cr steel with 160 ppm boron and 85 ppm nitrogen exhibits much higher creep rupture strength of base metal than P92 and also no Type IV fracture in welded joints at 650 °C.  相似文献   

19.
Hydrogen embrittlement of line pipe steels in the natural gas transmission and distribution network is investigated. The objective is to assess whether the existing network can be used to safely transport a mixture of hydrogen and natural gas. The surveyed literature indicates that the hydrogen-induced acceleration of fatigue crack growth induced by natural gas pressure fluctuations can be the most probable type of failure. We analyzed the fatigue crack growth in line pipe steels containing a long axial crack in the inner diameter (ID) surface by accounting for random cyclic loading due to random and realistic pressure fluctuations, crack closure, and accurate calculation of the stress intensity factor. Using the available experimental data for the crack growth rate vs. stress intensity factor range in the presence of hydrogen, we simulated crack growth over a period of 100 years. The results show that under typical pressure fluctuations in the natural gas network, cracks with depths less than 40% of the wall thickness will never reach depths equal to 75% of the wall thickness. This is a conservative estimate that results from i) the nature of the geometry of the initial flaw in the ID surface that we used in the analysis, ii) the fact that the existing experimental data for the effect of hydrogen on the Paris law are for pressures that are orders of magnitude larger than the partial pressures intended for the hydrogen gas in the mixture, and iii) the experimental data are for fatigue crack growth in pure hydrogen gas without impurities normally present in natural gas, such as oxygen or methane, that can inhibit hydrogen uptake.  相似文献   

20.
Creep and creep-fatigue crack growth in pre-cracked plates of 316L(N) austenitic stainless steel, containing a semi-elliptical surface defect and tested at 650 °C under combined axial and bending loading, are investigated. The results have been interpreted in terms of the creep fracture mechanics parameter C and compared with data obtained on standard compact tension (CT) specimens of the same material and batch. In making the assessments, the reference stress method has been used to determine C. Several formulae exist for calculating the reference stress depending on whether it is based on a ‘global’ or a ‘local’ collapse mechanism and the assessment procedure adopted. When using this approach, it has been found that the most satisfactory comparison of crack growth rates with standard CT specimen data is obtained when the ‘global’ reference stress solution is used in conjunction with mean uniaxial creep properties. It has been found that the main effect of changing the fatigue cycle range from 0.1 to −1.0 is to cause an acceleration in the early stage of cracking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号