共查询到20条相似文献,搜索用时 15 毫秒
1.
Tao S Cao H Liu W Li B Cao J Xu F Wang X Coveney RM Shen W Qin B Sun R 《Environmental science & technology》2003,37(11):2453-2459
A multimedia fate model with spatially resolved air and soil phases was developed and evaluated. The model was used for calculation of phenanthrene concentrations in air, water, soil, and sediment in Tianjin area and transport fluxes between the adjacent bulk phases under steady-state assumption. Both air and soil phases were divided into 3113 individual compartments of 4 km2 each to assess the spatial variation of phenanthrene concentrations and fluxes. Independently measured phenanthrene concentrations in air, water, and soil were used for model validation. The spatial variation in soil was validated using a set of measured phenanthrene concentrations of 188 surface soil samples collected from the area. Most data used either for model calculation or for model validation were collected during the last 5 years. As the results of the model validation, the calculated mean values for phenanthrene concentrations in various bulk phases are in fair agreement with those independently observed and are very close to those calculated using the model without spatial variation. The absolute difference between the calculated and the measured mean concentrations are 0.14, 0.48, and 0.13 log-units (mol/m3) for air, water, and soil, respectively. The spatial distribution patterns of phenanthrene in both air and soil were well modeled. Spatially, however, the model overestimated the soil phenanthrene level at low concentration range and underestimated it at high concentration range. The calculated distribution of phenanthrene in the air matches well with the emission from fossil fuel combustion, while the calculated distribution pattern in the soil is similar to that observed. 相似文献
2.
Tao S Xu FL Wang XJ Liu WX Gong ZM Fang JY Zhu LZ Luo YM 《Environmental science & technology》2005,39(8):2494-2499
Samples of eight types of vegetables, the rhizosphere soils, and bulk soils were collected from two sites (A and B) in Tianjin, China for the determination of hexachlorocyclohexane isomers (HCHs) and dichlorodiphenyltrichloroethane and metabolites (DDXs). The average concentrations of total HCHs and DDXs in the bulk soils were 3.6 and 80.1 ng/g for site A and 102 and 235 ng/g for site B, respectively. Relative accumulations of HCHs and DDXs in the rhizosphere soil from site A but not site B were demonstrated. The concentrations of total HCHs and DDXs in vegetable roots were 3.6-60 and 4.2-73 ng/g for site A and 15-152 and 7.1-136 ng/g for site B, respectively. Difference in bioaccumulation among various vegetables, especially between tuber and fibrous vegetables was significant. DDXs in spinach and cauliflower from site B and lindane (gamma-HCH) in cauliflower from both sites and violet from site B exceeded the maximum residual limits. Linear correlation of log-transformed HCHs and DDXs contents between the vegetable roots and the rhizosphere soils suggests the direct uptake of HCHs and DDXs. 相似文献
3.
Multimedia fate and multipathway human exposure models are widely adopted in assessments of toxicological risks of chemical emissions at the regional scale. This paper addresses the question of how much spatial detail is necessary in such models when estimating the intake by the entire population in large, heterogeneous regions such as Europe. The paper presents a spatially resolved multimedia fate and multipathway exposure model for Western Europe, available as IMPACT 2002. This model accounts for relationships between the location of food production and drinking water extraction as well as where population cohorts live relative to where chemical emissions occur. The model facilitates estimation of environmental concentration distributions, related levels of contaminants in foods, and the fraction of a chemical release that will be taken in by the entire human population (the intake fraction) at the regional scale. To evaluate the necessary spatial resolution, the paper compares estimates of environmental concentrations and the intake fraction from the spatially resolved model with the results of a consistent clone without spatial resolution. An evaluation for disperse emissions of PeCDF (2,3,4,7,8-pentachlorodibenzofuran, CAS# 5120731-4) suggests reasonable agreement with monitoring data for most impact pathways with both versions of the model, but that the generic vegetation models for estimating contaminant concentrations in agricultural produce require improvement. A broader comparison for a range of organic chemicals demonstrates that the nonspatial models are likely to be appropriate in general for assessing dispersed sources of emissions. However, it is necessary to include generic compartments in such nonspatial models to account separately for emissions that enter lakes with long residence times versus rivers that feed directly into seas. For assessing an emission source in a specific location, using models that are not spatially resolved can result in underestimation, or overestimation, of the population's intake by at least 3 orders of magnitude for some chemicals. 相似文献
4.
Dermal and nondietary pathways are possibly important for exposure to pesticides used in residences. Limited data have been collected on pesticide concentrations in residential air and surfaces following application. Models may be useful for interpreting these data and to make predictions about concentrations in the home for other pesticides based on chemical properties. We present a dynamic mass-balance compartment model based on fugacity principles. The model includes air (both gas phase and aerosols), carpet, smooth flooring, and walls as model compartments. Six size fractions of particulate matter with different fate and transport properties are included. We determine the compartmental fugacity capacity and mass-transfer rate coefficients between compartments. We compare model results to chlorpyrifos air and carpet measurements from an independent study. For a comparison, we run the same simulation for diazinon and permethrin. We quantify the effect of parameter uncertainty and model uncertainties related to the source release rate and conduct a sensitivity analysis to determine which parameters contribute most to output uncertainty. In the model comparison to chlorpyrifos measurements, the model results are of the same order of magnitude as measured values but tend to overpredict the measured data, thus indicating the need for a better understanding of emissions from treated surfaces. 相似文献
5.
Screening level risk assessment model for chemical fate and effects in the environment 总被引:2,自引:0,他引:2
A screening level risk assessment model is developed and described to assess and prioritize chemicals by estimating environmental fate and transport, bioaccumulation, and exposure to humans and wildlife for a unit emission rate. The most sensitive risk endpoint is identified and a critical emission rate is then calculated as a result of that endpoint being reached. Finally, this estimated critical emission rate is compared with the estimated actual emission rate as a risk assessment factor. This "back-tracking" process avoids the use of highly uncertain emission rate data as model input. The application of the model is demonstrated in detail for three diverse chemicals and in less detail for a group of 70 chemicals drawn from the Canadian Domestic Substances List. The simple Level II and the more complex Level III fate calculations are used to "bin" substances into categories of similar probable risk. The essential role of the model is to synthesize information on chemical and environmental properties within a consistent mass balance framework to yield an overall estimate of screening level risk with respect to the defined endpoint. The approach may be useful to identify and prioritize those chemicals of commerce that are of greatest potential concern and require more comprehensive modeling and monitoring evaluations in actual regional environments and food webs. 相似文献
6.
In recent years, Chinese environmental authorities have expressed interest in the use of Tradable Discharge Permits (TDP) as a regulatory instrument to control pollutant emissions. Environmental professionals still have not had enough experience, however, in designing and managing TDP systems, especially for non-uniformly dispersed pollutants. As an empirical study, this paper proposes an interzonal TDP system and analyzes its effectiveness in cost savings and environmental protection for reducing water pollutant COD (chemical oxygen demand) in Tianjin, China. Zonal permit system (ZPS) and emission permit system (EPS) are discussed for comparison. The inter-zonal TDP system is demonstrated to improve cost efficiency by allowing permit trades between zones, as long as water quality constraints are satisfied. The transactions are assumed to proceed in a multilateral sequential way and are simulated with a circularly running linear programming (LP) model. The simulation of permit transactions among 20 firms shows that to reach the same COD removal target, ZPS, interzonal TDP system, and EPS lowered the total reduction cost by 12.8%, 14.6%, and 15.8%, respectively. EPS, however, brought about "hot spots" problem. Finally, the transaction costs and the sensitivity of the three TDP systems to changes in both COD reduction rate and the initial permit allocation are discussed, and policy implications are addressed. 相似文献
7.
Lowry MI Bartelt-Hunt SL Beaulieu SM Barlaz MA 《Environmental science & technology》2008,42(19):7444-7451
Models describing the behavior of organic chemicals in landfills can be useful to predict their fate and transport and also to generate input data for estimates of exposure and risk. The landfill coupled-reactor (LFCR) model developed in this work simulates a landfill as a series of fully mixed reactors, each representing a daily volume of waste. The LFCR model is a numerical model allowing time-variable input parameters such as gas generation, and cover type and thickness. The model was applied to three volatile organic chemicals (acetone, toluene, benzene) as well as naphthalene and the chemical warfare agent sarin under three landfill conditions (conventional, arid, bioreactor). Sarin was rapidly hydrolyzed, whereas naphthalene was largely associated with the landfill solid phase in all scenarios. Although similar biodegradation rates were used for acetone and toluene, toluene was more persistent in the landfill due to its hydrophobicity. The cover soil moisture content had a significant impact on gaseous diffusive losses. 相似文献
8.
Levels of polychlorinated biphenyls (PCBs), hexachlorobenzene, hexachlorocyclohexane isomers (alpha, beta, gamma), and chlorinated pesticides (DDTs) in cod-liver oil used as a dietary supplement were determined. Total PCB and DDT concentrations varied from 25 to 201 ng g(-1) lipid weight basis and from 25 to 133 ng g(-1) lipid weight basis, respectively. Hexachlorobenzene contributed very little to the overall contaminant burden of dietary supplement oils, whereas hexachlorocyclohexane isomers were below the instrumental detection limits in all samples. The daily intake of PCBs and DDTs derived by the consumption of cod-liver oil at manufacturer-recommended doses varied from 0.004 to 2.01 microg/day and from 0.004 to 1.24 microg/day, respectively. Relative to some dioxin-like PCB congeners (mono-ortho PCB 105, 118, and 156; non-ortho PCB 77, 126, and 169), the intakes calculated varied from less than 0.001 to 0.74 pg of toxic equivalency values (TEQ) per kg of body weight per day. These values, although below the range of 1 to 4 pg of TEQ per kg of body weight per day set by the World Health Organization, emphasize the need for strict and continuous monitoring of fish oil contamination to reduce, as much as possible, the risks to human health. 相似文献
9.
Cooter EJ Hutzell WT Foreman WT Majewski MS 《Environmental science & technology》2002,36(21):4593-4599
The Community Multiscale Air Quality (CMAQ) modeling system has been adapted to simulate the regional fate and transport of atrazine. Model modifications and simulations spanning April to mid-July 1995 are described in a previous paper. CMAQ results for atrazine concentrations in air and rainfall are evaluated against field observations taken along the Mississippi River and the shores of Lake Michigan in 1995. CMAQ results agree within 10% of published annual wet deposition load estimates for Lake Michigan and predicted annual dry deposition lies within published error bounds. Comparisons of weekly observed and predicted air and rainfall concentrations along the Mississippi River yield order-of-magnitude differences. Precipitation weighting of concentrations in rainfall good agreement for seasonal time frames. Weekly ambient gas form concentrations tend to be overpredicted by the CMAQ and semivolatile particulate fractons are underpredicted. Uncertainty in CMAQ predictions of air and rainfall concentrations for atrazine appear to derive primarily from uncertainty in emissions estimates, simulated precipitation, and spatial scale. 相似文献
10.
Polybrominated diphenyl ethers in watershed soils of the Pearl River Delta, China: occurrence, inventory, and fate 总被引:11,自引:0,他引:11
Soils play an important role in the distribution and biogeochemical cycling of polybrominated diphenyl ethers (PBDEs) as they are a major reservoir and sink for PBDEs due to their large sorption capacity. In this study, concentrations, compositional profiles, mass inventories, and fate of sigma9PBDEs (28, 47, 66, 100, 99, 154, 153, 138, 183) and BDE 209 were investigated in 33 surface soils, six profile soils, and three point-source polluted soils (close to e-waste dismantling sites) from the Pearl River Delta (PRD), China. The concentrations of sigma9PBDEs and BDE 209 in the surface soils ranged from 0.13 to 3.81 ng/g with an average of 1.02 ng/g and from 2.38 to 66.6 ng/g with an average of 13.8 ng/g, respectively, and ranged from 1.93 to 19.5 ng/g and from 25.7 to 102 ng/g, respectively, in the point-source contaminated soils. The PBDE compositional patterns in the surface soils indicated deca-BDE, penta-BDE, and octa-BDE products as the main sources, but those in the point-source samples suggested deca-BDE and octa-BDE technical mixtures as the dominant sources. The mass inventories of PBDEs in soils of the PRD were estimated at 3.98 and 44.4 t for sigma9PBDEs and BDE 209, respectively. The average loading of PBDEs in the soils was comparable to that in the sediments of the Pearl River Estuary, suggesting that soil erosion and surface runoff are an important mode to transport PBDEs from terrestrial sources to oceans in the PRD. Individual BDE congeners, sigma9PBDEs, and PBDE 209, were significantly correlated with total organic carbon (TOC), and a good regression (except for BDE 47) between the logarithms of TOC-normalized BDE average concentrations and their log K(ow) was also obtained, indicating that sorption of PBDEs on soil organic matter governed their spatial distribution, transportation, and fate in the soils. Predicted aqueous and gaseous concentrations of PBDEs were derived from the soil-water and soil-air partitioning models, respectively, and good agreements were obtained between the predicted and previously reported values. BDE 47 and/or 28 did not appear to follow the same trend for these models, an indication that an portion of them was likely the biodegradation byproducts in soils. 相似文献
11.
Microcosm data were used to develop a deterministic model to describe how rhizodeposition affects the fate of phenanthrene in aged contaminated soil. Microbial mineralization and soil sequestration of 14C-phenanthrene were compared in microcosms amended weekly with phenolic-rich mulberry root extracts versus unamended controls. Mineralization was higher in the amended soils simulating the rhizosphere (57.7 +/- 0.9%) than in controls simulating bulk (unplanted) soils (53.2 +/- 0.7%) after 201 days (p < 0.05). Humin was the main soil sink for the residual 14C-label. Whereas the total 14C-label associated with humin remained constant in biologically active soils (at about 30%), it increased up to 80% after 201 days in sterile controls. The initial phenanthrene extraction with n-butanol (commonly used to assess bioavailability) slightly underestimated the fraction thatwas mineralized (assessed by 14CO2 recovery). Changes in the unextractable fraction (determined by combustion in a biological oxidizer) suggested the presence of two soil sequestration domains: (1) irreversibly bound residue, and (2) an intermediate transition phase that is unextractable by solvents at a given point in time but could become bioavailable due to physicochemical or biological transformations of the binding matrix. The fate of phenanthrene was accurately modeled by considering the transfer of the 14C label between different soil compartments as first-order kinetic processes. Model simulations suggested that the system was approaching a stable end-point after 201 days of simulated rhizoremediation, and corroborated that microorganisms have a significant impact on the fate of phenanthrene in soil. 相似文献
12.
Estimating the influence of forests on the overall fate of semivolatile organic compounds using a multimedia fate model 总被引:1,自引:0,他引:1
On the basis of recently reported measurements of semivolatile organic compound (SOC) uptake in forest canopies, simple expressions are derived that allow the inclusion of a canopy compartment into existing non-steady-state multimedia fate models based on the fugacity approach. One such model is used to assess how the inclusion of the canopy compartment in the model affects the calculated overall behavior of SOCs with specific physical--chemical properties. The primary effect of the forest is an increase in the net atmospheric deposition to the terrestrial environment, reducing atmospheric concentrations and accordingly the extent of deposition to the agricultural and aquatic environments. This effect was most pronounced for chemicals with log KOA around 9-10 and log KAW -2 to -3; their average air concentrations during the growing season decreased by a factor of 5 when the canopy compartment was included. Concentration levels in virtually all compartments are decreased at the expense of increased concentrations in the forest soil. The effect of the forest lies not in a large capacity for these chemicals but in the efficiency of pumping the chemicals from the atmosphere to the forest soil, a storage reservoir with high capacity from which the chemicals can return to the atmosphere only with difficulty. Because of seasonal variability of canopy size and atmospheric stability, uptake into forests is higher during spring and summer than in winter. The model suggests that this may dampen temperature-driven seasonal fluctuations of air concentrations and in regions with large deciduous forests may lead to a temporary, yet notable dip in air concentrations during leaf development in spring. A sensitivity analysis revealed a strong effect of forest cover, forest composition, and degradation half-lives. A high degradation loss on the plant surface has the effect of preventing the saturation of the small plant reservoir and can cause very significant reductions in atmospheric concentrations of those SOCs for which uptake in the canopy is limited by the size of the reservoir. 相似文献
13.
The Community Multiscale Air Quality (CMAQ) modeling system is adapted to simulate the regional transport and fate of atrazine, one of the most widely used herbicides in the United States. Model chemistry and deposition are modified, and a gas-to-particle partitioning algorithm is added to accommodate semivolatile behavior. The partitioning algorithm depends on humidity, temperature, and particulate matter concentration and composition. Results indicate that gaseous atrazine will usually dominate warm season atmospheric concentrations, but particulate form can surpass gas forms when atmospheric humidity is high (> 70%) and less-acidic (pH > 2.5) aqueous aerosol component is present. Implementation of the modified CMAQ for atrazine is illustrated, and, within the limits of our current understanding, preliminary transport and fate patterns appear to be reasonable. This research represents one of the first attempts to include a gas-to-particulate matter partitioning mechanism in an Eulerian grid-model. 相似文献
14.
Smoked seafoods were screened for the presence of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and other organochlorine compounds. Total PAH concentrations ranged from 46.5 ng/g (wet weight) for smoked swordfish to 124.0 ng/g (wet weight) for smoked herring. Among the carcinogenic PAHs, benzo(a)pyrene ranged from undetectable levels for several smoked fish to 0.7 ng/g for Scottish salmon, dibenzo(ah)anthracene was not present in any of the samples analyzed, and benzo(a)anthracene was found in all samples and at particularly high levels in salmon (23.2 ng/g). Benzo(a)pyrene concentrations were below the tolerance limit for all samples. PCB concentrations for the different samples ranged from 2 to 30 ng/g. Chlorinated pesticides (DDTs: p,p'-DDE, p,p'-DDT, o,p'-DDT, p,p'-DDD, and o,p'-DDD) were detected at levels ranging from 0.2 ng/g (wet weight) in bluefin tuna to 17.5 ng/g (wet weight) in salmon. Hexachlorocyclohexane isomers (alphaHCH + betaHCH + gammaHCH) were present in higher amounts in eels (6.5 ng/g) than in the other smoked fish. For 40% of the samples, PCB concentrations exceeded the limit fixed by the European Union, while pesticide levels were below the maximum acceptable limit proposed by the Food and Agriculture Organization. 相似文献
15.
16.
Polycyclic aromatic hydrocarbons in riverine runoff of the Pearl River Delta (China): concentrations, fluxes, and fate 总被引:2,自引:0,他引:2
On the basis of a monthly sampling effort from March 2005 to February 2006, the total concentrations of the sums of 27 and 15 polycyclic aromatic hydrocarbons (defined as sigma27PAHs and sigma15PAHs, respectively) in riverine runoff of the Pearl River Delta (PRD), China, and associated fluxes were determined. No clear temporal and spatial trends of PAH concentrations were found at all eight riverine runoff outlets where the samples were collected. The annual fluxes of sigma27PAHs and sigma15PAHs from the PRD to the coastal ocean were 60.2 and 33.9 metric tons, respectively. Assuming that riverine flux was positively related to the regional emission of PAHs, the annual riverine fluxes from five major rivers in China to the global oceans were estimated, which are quite significant relative to other major rivers of the world. On the basis of mass balance considerations, approximately 87% of sigma15PAHs inputting to the Pearl River Estuary and northern South China Sea was derived from riverine runoff from the PRD. In addition, approcimately 22.3 metric tons of sigma15PAHs annually outflow to open seas, which is equivalent to a concentration of 0.34 pg/L in the global oceans if the PAHs are evenly distributed in the upper 200 m of the water column. A comparison with the global background level of PAHs indicated that approximately 0.4% of PAHs in the open oceans may have been contributed by 1-year discharge from the PRD. 相似文献
17.
从1860年的第二次鸦片战争,到1900年八国联军攻占天津、入侵北京,天津先后被分割出九国租界。比如现存的“解放路金融一条街”、中心公园(劝业场附近)一带的法租界、东站附近的意租界,以及号称“五大道”地区的欧式建筑群。这些欧式建筑以及一些要员根据自己爱好建设的半欧半中 相似文献
18.
Sources, fate and transport of perfluorocarboxylates 总被引:21,自引:0,他引:21
Prevedouros K Cousins IT Buck RC Korzeniowski SH 《Environmental science & technology》2006,40(1):32-44
This review describes the sources, fate, and transport of perfluorocarboxylates (PFCAs) in the environment, with a specific focus on perfluorooctanoate (PFO). The global historical industry-wide emissions of total PFCAs from direct (manufacture, use, consumer products) and indirect (PFCA impurities and/or precursors) sources were estimated to be 3200-7300 tonnes. It was estimated that the majority (approximately 80%) of PFCAs have been released to the environment from fluoropolymer manufacture and use. Although indirect sources were estimated to be much less importantthan direct sources, there were larger uncertainties associated with the calculations for indirect sources. The physical-chemical properties of PFO (negligible vapor pressure, high solubility in water, and moderate sorption to solids) suggested that PFO would accumulate in surface waters. Estimated mass inventories of PFO in various environmental compartments confirmed that surface waters, especially oceans, contain the majority of PFO. The only environmental sinks for PFO were identified to be sediment burial and transport to the deep oceans, implying a long environmental residence time. Transport pathways for PFCAs in the environment were reviewed, and it was concluded that, in addition to atmospheric transport/degradation of precursors, atmospheric and ocean water transport of the PFCAs themselves could significantly contribute to their long-range transport. It was estimated that 2-12 tonnes/ year of PFO are transported to the Artic by oceanic transport, which is greater than the amount estimated to result from atmospheric transport/degradation of precursors. 相似文献
19.
Geo-referenced multimedia environmental fate model (G-CIEMS): model formulation and comparison to the generic model and monitoring approaches 总被引:3,自引:0,他引:3
Suzuki N Murasawa K Sakurai T Nansai K Matsuhashi K Moriguchi Y Tanabe K Nakasugi O Morita M 《Environmental science & technology》2004,38(21):5682-5693
A spatially resolved and geo-referenced dynamic multimedia environmental fate model, G-CIEMS (Grid-Catchment Integrated Environmental Modeling System) was developed on a geographical information system (GIS). The case study for Japan based on the air grid cells of 5 x 5 km resolution and catchments with an average area of 9.3 km2, which corresponds to about 40,000 air grid cells and 38,000 river segments/catchment polygons, were performed for dioxins, benzene, 1,3-butadiene, and di-(2-ethyhexyl)phthalate. The averaged concentration of the model and monitoring output were within a factor of 2-3 for all the media. Outputs from G-CIEMS and the generic model were essentially comparable when identical parameters were employed, whereas the G-CIEMS model gave explicit information of distribution of chemicals in the environment. Exposure-weighted averaged concentrations (EWAC) in air were calculated to estimate the exposure ofthe population, based on the results of generic, G-CIEMS, and monitoring approaches. The G-CIEMS approach showed significantly better agreement with the monitoring-derived EWAC than the generic model approach. Implication for the use of a geo-referenced modeling approach in the risk assessment scheme is discussed as a generic-spatial approach, which can be used to provide more accurate exposure estimation with distribution information, using generally available data sources for a wide range of chemicals. 相似文献
20.
Hansen KM Halsall CJ Christensen JH Brandt J Frohn LM Geels C Skjøth CA 《Environmental science & technology》2008,42(8):2943-2948
A dynamic snowpack module was implemented in the Danish Eulerian Hemispheric Model Persistant Organic Pollutants (DEHM-POP), an atmospheric chemistry-transport model designed to study the environmental fate of persistent organic pollutants in the Northern Hemisphere. The role of the snowpack on the fate of alpha-hexachlorocyclohexane (alpha-HCH) was investigated by making simulations both with and without the formation of a snowpack and comparing model results with data from 21 air monitoring sites. The inclusion of a dynamic snowpack module in the DEHM-POP model generally improves the fit between modeled and observed alpha-HCH air concentrations for the winter and spring seasons and the overall correlation coefficient between predicted and observed concentrations are improved at 8 of the sites. The predicted snowpack concentrations are in good agreement with the few available snow measurements from the Arctic. The presence of a snowpack increases surface boundary layer air concentrations of alpha-HCH at midlatitudes, while the effect is more pronounced in the Arctic due to the longer periods of snow cover. The results indicate that the snowpack module in DEHM-POP acts as a fast-exchanging temporary storage medium for alpha-HCH, as significant fractions were rapidly revolatilized back into the atmosphere following deposition with snowfall, although the current parametrization for vapor-exchange probably over emphasizes this process. Nonetheless, increased air concentrations observed between March and May ("spring maximum events"; SME) at several high latitude monitoring stations are also predicted by the model. The model results indicate that the SMEs are associated with the revolatilization of previously deposited chemical from the snowpack, following a reduction in the capacity of the snowpack to retain alpha-HCH with increasing temperatures toward the end of the winter period, rather than the actual melting of the snowpack. The SMEs are not predicted at all the Arctic monitoring sites by the model, and the significance of the snowpack in controlling these in the model is, therefore, open to question given the uncertainties in the snow-air partition coefficient (K(sa)) and the reliance of the model on a one-layer snowpack rather than a multilayered snowpack. 相似文献