首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A conventional DC-AC inverter can only output either a single-phase AC voltage or a set of three-phase AC voltages. A new three-port DC-AC inverter which can simultaneously output a single-phase AC voltage and a set of three-phase AC voltages is proposed in this paper. This three-port DC-AC inverter is based on the three-port T-type multi-level power converter which is composed of three T-type power electronic legs, a decoupling transformer set, a filter inductor set, a single-phase filter capacitor, and a three-phase filter capacitor set. The DC port of the proposed power converter is connected to a DC power source to act as the input port, and the single-phase AC port and the three-phase AC port serve as two output ports to supply power to the single-phase load and the three-phase load, respectively. The zero-sequence transformer is used to decouple the single-phase and three-phase AC components, which are generated by the three T-type power electronic legs. The operation principle of this three-port DC-AC inverter is analyzed, and a hardware prototype is established to verify the performance of the proposed three-port DC-AC inverter. The experimental results are as expected.  相似文献   

2.
A boost DC-AC converter: analysis, design, and experimentation   总被引:20,自引:0,他引:20  
This paper proposes a new voltage source inverter (VSI) referred to as a boost inverter or boost DC-AC converter. The main attribute of the new inverter topology is the fact that it generates an AC output voltage larger than the DC input one, depending on the instantaneous duty cycle. This property is not found in the classical VSI, which produces an AC output instantaneous voltage always lower than the DC input one. For the purpose of optimizing the boost inverter dynamics, while ensuring correct operation in any working condition, a sliding mode controller is proposed. The main advantage of the sliding mode control over the classical control schemes is its robustness for plant parameter variations, which leads to invariant dynamics and steady-state response in the ideal case. Operation, analysis, control strategy, and experimental results are included in this paper. The new inverter is intended to be used in uninterruptible power supply (UPS) and AC driver systems design whenever an AC voltage larger than the DC link voltage is needed, with no need of a second power conversion stage  相似文献   

3.
A novel circuit-topology family of the current-mode AC/AC converter with high-frequency AC link, based on a Flyback converter, is proposed. These circuit topologies, which can transfer one unregulated sinusoidal voltage with high total harmonic distortion (THD) into another regulated constant-frequency sinusoidal voltage with low THD, are composed of input cycloconverter, high-frequency storage transformer, and output cycloconverter. The circuit-topology family includes single four-quadrant power switch mode, push-pull mode, half-bridge mode, and full-bridge mode circuits. The single four-quadrant power switch mode and push-pull mode converters are suitable for low input voltage fields, but the half-bridge mode and full-bridge mode converters are suitable for high input voltage fields. The operational mode, steady principle, and transient voltage feedback control strategy of the kind of converter are investigated. The output characteristic curve, its relation to internal resistance, and the design criteria for the key circuit parameters are given. The theoretical analysis and the test result of the 500 VA 220 V 15% 50 HzAC/220 V 50 HzAC prototype have shown that the converters have advantages such as high-frequency galvanic isolation, simple topology, two-stage power conversion [low frequency alternating current (LFAC)/high frequency alternating current (HFAC)/LFAC], bidirectional power flow, high efficiency, high power density, low THD of the output voltage, strong adaptability to various loads, higher line power factor, low audio noise, etc.  相似文献   

4.
This paper proposes a transformer-less multi-level solar power generation system. This solar power generation system is composed of a solar cell array, a boost power converter, an isolation switch set and a full-bridge inverter. A unipolar pulse-width modulation (PWM) strategy is used in the full-bridge inverter to attenuate the output ripple current. Circuit isolation is accomplished by integrating the isolation switch set between the solar cell array and the utility, to suppress the leakage current. The isolation switch set also determines the DC bus voltage for the full-bridge inverter connecting to the solar cell array or the output of the boost power converter. Accordingly, the proposed transformer-less multi-level solar power generation system generates a five-level voltage, and the partial power of the solar cell array is also converted to AC power using only the full-bridge inverter, so the power efficiency is increased. A prototype is developed to validate the performance of the proposed transformer-less multi-level solar power generation system.  相似文献   

5.
基于TL494的微型车载逆变器设计   总被引:1,自引:0,他引:1  
针对汽车内部直流电源不能用于交流用电器的问题,设计了一款基于脉宽调制芯片TL494的微型车载逆变器。该逆变器采用DC-DC变换和DC-AC逆变两级结构,前级完成直流升压,后级选择脉宽调制(PWM)控制方式,将直流电压逆变为220V/50Hz的方波交流电。其中,DC-DC变换器先通过推挽逆变电路和高频变压器将12V变换为22V交变方波,再经快恢复二极管整流得到22V直流电。另外,该逆变器提供了一个标准USB接口,可以为具有USB接口的手机等设备充电。  相似文献   

6.
This paper presents the design, analysis, and development of a novel autotransformer-based 18-pulse AC-DC converter with reduced kilovoltampere rating, feeding vector-controlled induction-motor drives (VCIMDs) for power-quality improvement at the point of common coupling (PCC). The proposed autotransformer consists of only two single-phase transformers for its realization against three single-phase transformers required in other configurations. The proposed 18-pulse AC-DC converter is suitable for retrofit applications, where, presently, a six-pulse diode bridge rectifier is being used. A set of power-quality parameters, such as total harmonic distortion (THD) and crest factor of AC mains current, power factor, displacement factor, and distortion factor at AC mains, THD of supply voltage at PCC, and DC-bus-voltage ripple factor for a VCIMD fed from an 18-pulse AC-DC converter, are computed to observe its performance. The presented design technique provides flexibility to give an average DC output from the proposed converter, which is the same as that of a conventional three-phase diode bridge rectifier. However, it is also possible to step-up or step-down the output voltage as required. The effect of load variation on VCIMD is also studied to observe the effectiveness of the proposed harmonic mitigator. A laboratory prototype of the proposed autotransformer-based 18-pulse AC-DC converter is developed to validate the design and simulation model.  相似文献   

7.
A new step-up DC-to-DC power converter with high power density is presented. It contains no inductors or transformers. The controlled energy transfer from an unregulated voltage source to a regulated output voltage is realized through a switched-capacitor circuit. The operation of the switches in the power stage is dictated by a PWM-type feedback circuit. The new regulator is simulated by using an averaged state-space approach. The transient and steady-state waveforms, as well as the AC small-signal input-to-output and control-to-output transfer functions are obtained by both simulation and experiments. The power supply, implemented for a nominal power of 15 W, and input-to-output voltage ratio of 5/12, features high efficiency for this class of powers, small output voltage ripple, continuous input current, low weight and small size  相似文献   

8.
针对目前PV光伏并网发电系统的核心逆变器的现状、结构和控制方法进行了详细的分析,从电网、PV系统及用户的需求出发,指出传统的单级全桥逆变器普遍具有不能处理较宽的输入PV电压,且需要重型工频升压变压器等缺点。在此基础上,本文创新设计并实现了一种基于单级全桥逆变器的并联耦合改进结构。实测证明这种并联耦合反激结构可以有效地减小通过大容量输入电解电容的纹波电流的RMS,从而延长电容的寿命;还可减小输出电流的纹波,从而降低输出电流的THD(谐波失真);还可适应较宽的输入电压,减小交流纹波,减小磁芯,同时可以提供较高的额定输出电流等优点。  相似文献   

9.
董清臣  范铭 《电子科技》2015,28(10):166
针对DC-DC升压器存在效率低,纹波电压较大,输出电压不稳定等问题,文中开发和设计了一种具有恒定输出电压的DC-DC升压转换器的方法。通过升压电路和电压反馈技术,将波动的输入电压变成恒定的直流电压输出。该设计通过将转换器的输出电压与参考电压相比较,两者的差值会产生一个PWM信号控制升压器的通断时间,从而达到恒定电压输出。仿真结果显示,该实验电路能在频率为20 kHz的连续导通模式中工作,产生24 V的恒定输出电压,输出功率为100 W。  相似文献   

10.
The peak line-to-line inverter AC voltage, in general, cannot exceed the supply DC voltage and transformers have to be used when voltage step-up is required. This paper describes how the necessity of using a Tri-Level PWM strategy in the current source inverter can be turned into an advantage by producing a voltage boost so that transformers are no longer required. During the frequent occurrence of the “shoot-through” states, which is the characteristic of the Tri-Level PWM-controlled inverter, magnetic energy builds up in the DC link inductor. At the end of these periods, the LdcdIdc/dt voltage across the inductor augments the inverter output voltage in the same way as in the basic boost type DC/DC power converter. The paper describes the circuitry required to ensure linear control. Analytical, simulation, and experimental results are given. Applications are found in all instances where the AC voltage is higher than the available supply DC voltage  相似文献   

11.
针对解决载有交流电动机的电动车车载电源的直交流电压转换问题,本论文在分析了逆变器结构和原理的基础上,提出了DC-DC-AC的设计思路,采用高频变压器、PWM和SPWM技术搭载控制电路,将车载48 V铅酸电池电压升压,再经过逆变,得到纯正弦交流电压;同时本论文给出了高频变压器和滤波电路的参数选定方法。最后实验结果表明48 V铅酸电池经过升压和逆变,可输出频率为50 Hz,幅值为220 V的纯正弦交流电压;同时实物电路具有体积小、设计成本低、输出交流电压稳定、带载能力强的良好性能。  相似文献   

12.
To develop practical thermoelectric generator (TEG) systems, especially radioisotope thermoelectric power supplies for deep-space exploration, a power conditioning stage with high step-up gain is indispensable. This stage is used to step up the low output voltage of thermoelectric generators to the required high level. Furthermore, maximum power point tracking control for TEG modules needs to be implemented into the power electronics stages. In this paper, the temperature-dependent electrical characteristics of a thermoelectric generator are analyzed in depth. Three typical high step-up power converters suitable for TEG applications are discussed: an interleaved boost converter, a boost converter with a coupled inductor, and an interleaved boost converter with an auxiliary transformer. A general comparison of the three high step-up converters is conducted to study the step-up gain, conversion efficiency, and input current ripples. The interleaved boost converter with an auxiliary transformer is found to be the most suitable topology for TEG applications, which is verified by experiments.  相似文献   

13.
A reversible step-up/step-down AC-DC converter is presented in this paper. It is a fifth-order system, capable of managing power transfer from a DC source to an AC one, with any ratio between the DC and the AC voltage levels, and producing a sinusoidal output current, using only one power processing stage. By reversing the energy flow this circuit becomes a high power factor rectifier. This reversion can be obtained simply by inverting the reference AC current. The system is analyzed as the connection of two independent lower order subsystems, controlled by sliding mode with decentralised switching scheme. Experimental results from a 100 W prototype operating in both senses, as inverter and as rectifier, are shown to confirm the mathematical analyses and simulations  相似文献   

14.
The solar photovoltaic (PV) module output voltage changes according to the variation of light intensity and temperature. This paper presents the implementation of an automatic digital controller of a DC-DC boost converter without batteries for a solar cell module by using a peripheral interface controller, which forms a closed loop, to control the ON-OFF period of the switching pulse. The output of DC-DC converter is maintained by automatically increasing or decreasing the pulse width. To produce the pulse width modulation (PWM), the microcontroller is programmed according to the required duty cycle for the power switch. The PWM ON period is increased with the decrease in the PV voltage and vice-versa. The input voltage to the inverter is maintained constantly and is converted into an AC signal by using the metal-oxide-semiconductor field effect transistor (MOSFET) H-bridge operated in the sinusoidal pulse width modulation mode by using a PIC (peripheral interface controller) microcontroller. The generated AC signal can be connected to the AC grid or to the AC load. The simulated results by using Proteus 8 and hardware implemented results verify the effectiveness of the proposed controller.  相似文献   

15.
A novel approach to filter design for a closed-loop, pulse-width-modulated (PWM) DC-AC inverter system driving an RL load is investigated. The system has a rectangular hysteresis in the forward path and it is closed by current feedback. When it is excited by a sinusoidal input reference, it provides square pulses that produce a nearly sinusoidal current in the load. Using a describing function technique, design equations for the filter are derived. The data needed for the filter evaluation are the amplitude of current ripple and the frequency of square pulses delivered by the power bridge. System simulation and experimental results show that the design of the filter can be based on the method proposed and that the filter can provide a significant reduction of current ripple, or otherwise a significant reduction of switching frequency  相似文献   

16.
为了有效降低电流纹波和提高转换器效率,提出一种新型交错并联同相降压升压DC/DC转换器。提出的结构通过采用输入/输出(I/O)磁耦合交错并联和阻尼网络技术,降低了开关的电压应力、内部电压振荡和I/O电流纹波,并提升了转换器的效率。采用状态空间平均法,在连续导通模式下分析了提出转换器的稳态运行,从理论上证明了其优势。样机的功率设置为360W,输出电压为36 V,模拟结果以及实验结果显示,当输出电流为6A时,转换效率最高达到96%,最大输入电流纹波百分比仅为9.4%,相较于其他类似转换器,提出的转换器具有效率较高和I/O电流纹波较低的优势。  相似文献   

17.
This paper proposes a novel three-phase ac-dc buck-boost converter. The proposed converter uses four active switches, which are driven by only one control signal. This converter is operated in discontinuous conduction mode (DCM) by using the pulsewidth modulation (PWM) technique, and the control scheme very easily and simply achieves purely sinusoidal input current, high power factor, low total harmonic distortion of the input current and step-up/down output voltage. Also, the proposed converter provides a constant average current to the output capacitor and load in each switching period. Thus, the ripple component of sixth times line frequency will not appear in the output voltage. Therefore, a smaller output capacitor can be used in the proposed converter. Moreover, the steady-state analysis of voltage gain and boundary operating condition are presented. Also, the selections of inductor, output capacitor and input filter are depicted. Finally, a prototype circuit with simple control logic is implemented to illustrate the theoretical analysis.  相似文献   

18.
High-efficiency power conversion for low power fuel cell generation system   总被引:1,自引:0,他引:1  
This study presents a newly designed topology for a fuel cell energy source conversion in order to supply a highly reliable utility power. Because the fuel cell has the power quality of low voltage as well as high current due to the electrochemical reaction, a high step-up dc-dc converter is utilized for boosting the fuel cell voltage up to a constant dc-bus voltage for the utilization of later inverter. Moreover, a current-source sine-wave voltage inverter is designed in the sense of voltage-clamping and soft-switching techniques to enable the use of a smaller inductor in the current source circuit and the compression of the voltage stress across switches about two times of the dc-bus voltage. In this power conversion scheme, the output voltage has the salient features of lower distortion, fast dynamic regulating speed and insensitivity to load variation, even under nonlinear loads. In addition, experimental results via an example of a proton exchange membrane fuel cell generation system with 250-W nominal power rating are given to demonstrate the effectiveness of the proposed power conversion strategy. According to the experimental measure, the maximum power inverter efficiency is over 95% and the total harmonic distortions for various load conditions are all within 1.1%.  相似文献   

19.
A new output voltage control technique is proposed to obtain the improved buck-boost operation of the quantum series resonant power converter (QSRC). The new nonlinear dynamic model of QSRC is first derived and the cross-coupled nonlinear term existing in the output voltage dynamics is decoupled by using control methods such as the periodic control of the boosting switch (PCBS) and the resonant current control (RCC). By applying the state-space averaging concept to the decoupled dynamics, two linear large signal averaged models are obtained for PCBS and RCC schemes. Using the proposed technique, the flux imbalance problem of the isolation transformer and the robustness of the output voltage response can be easily considered. This technique can also be widely applicable to the cascade buck-boost power converter, which can be implemented by inserting a boosting switch between the output filter inductor and the ripple capacitor of the forward power converter. The validity of the proposed scheme is confirmed by the computer simulations and the experiments  相似文献   

20.
A cascade of buck and boost converter is presented here. The control operates in a manner that the converter is either in buck or boost (BOB) mode on a cycle by cycle basis. It transitions between the modes seamlessly to provide a tracking power conversion function for modulating the power supply of a variable envelope radio frequency (RF) power amplifier. The control algorithm and its implementation using switched capacitor circuits is described. Simulation and measured experimental results including converter efficiency, tracking accuracy, and spectrum at the output of the RF power amplifier are provided. This control technique allows seamless transition between the buck and boost modes while tracking RF envelopes with bandwidth greater than 100 kHz, and maintaining extreme accuracy and extremely low ripple. The efficiency of this converter operating at 1.68 MHz is close to 90% over a wide range of conversion ratios. The area of the power converter is extremely small allowing this to be integrated into a cellular telephone. The controller was integrated as part of a larger power management IC as well as a discrete IC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号