首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究变密度、变形状或变形状变密度混合型微结构对刀具润滑状态的影响,建立具有混合微结构的刀具和切屑界面的润滑模型,采用FLUENT软件计算油膜上壁面压力、承载力及入口质量流速参数,分析微结构的参数及排布对刀具润滑状态的影响。结果表明:变密度微结构根据重度磨损区、中度磨损区、轻度磨损区设置不同面积率,变形状微结构根据形状特点设置形状及排布,2种混合型微结构均可提高承载能力和增加润滑油入口质量流速;变形状变密度混合型微结构结合了变密度微结构和变形状微结构的优势,能更好地发挥微结构改善刀-屑界面润滑油膜分布、持续补充润滑剂的能力,从而可获得最佳的综合润滑性能。  相似文献   

2.
为研究在流体润滑条件下,表面微织构形貌参数对润滑性能的影响,建立考虑空化效应的单织构三维计算模型。用CFD方法模拟织构在不同深度、面积密度和表面形状条件下,油膜承载力、摩擦因数和压力分布的变化情况。结果表明:随着织构深度(面积密度)的增加,油膜的承载力先增大后减小,摩擦因数先减小后增大,即织构存在最优的深度和面积密度使得流体动压润滑性能最优;随着上壁面滑移速度的增大,织构的最优深度有减小的趋势,而最优面积密度趋于稳定;设计具有汇流作用的织构表面形状可以提高油膜的承载力,且速度越大,改善润滑的效果越明显。  相似文献   

3.
为探究齿面沟槽织构参数对渐开线圆柱直齿轮润滑性能的影响,简化齿轮啮合模型选取并建立单元沟槽CFD仿真模型,通过分别求解未考虑和考虑空化效应的2种仿真模型,获得不同沟槽尺寸参数对模型润滑性能的影响规律。结果表明:沟槽织构的存在改变了流体域油膜压力分布状态,具有更高的油膜承载力和更好的动压性能;不考虑空化效应时,油膜承载力大小与沟槽宽度的变化密切相关,而受沟槽深度变化的影响较小,沟槽织构浅且宽时齿面具有更好的润滑性能;考虑空化效应后,表面润滑性能随沟槽宽度与深度的变化而动态变化,相较于不考虑空化效应,沟槽宽度更窄、深度更深时齿面具有更好的润滑性能;在沟槽深度与宽度均较小时,空化效应对动压性能的影响不是很大,在沟槽深度较小而沟槽宽度较大时,空化效应对动压性能的影响较大;而在沟槽深度较大时,空化效应对动压性能的影响始终较大,且不受沟槽宽度变化的影响。  相似文献   

4.
径向轴承在运行过程中由于磨损、疲劳裂纹、烧蚀、开有油槽等,可能会出现沟槽缺陷而影响轴承的润滑状态。基于Reynolds方程对表面有沟槽的径向轴承进行理论建模并进行数值模拟,得到表面有凹槽缺陷的径向轴承在润滑过程中油膜厚度、压力的分布,研究不同形状、周向宽度、深度和周向间距的凹槽对轴承润滑状态的影响。研究结果表明,矩形凹槽对轴承润滑的影响最大;凹槽参数对轴承润滑的影响在润滑油入口区和出口区各不相同,在润滑油入口区,随着凹槽周向宽度、周向间距的增加,承载力减小、摩擦因数增大;在润滑油出口区,随着凹槽周向宽度、周向间距的增加,承载力增大、摩擦因数减小;在润滑油出口区,凹槽深度对轴承润滑影响不大,而在润滑油入口区,凹槽深度增加将导致承载力减小、摩擦因数增大。  相似文献   

5.
以动压滑动轴承为研究对象,根据流体动压润滑原理,建立圆形微凹坑织构化动压滑动轴承油膜数学模型,推导织构化滑动轴承油膜厚度修正公式;结合Reynolds方程有限差分法的求解方法,分析全织构和织构化参数(间距、深度)对动压滑动轴承圆周方向压力分布的影响。结果表明:分布在轴承上的全织构会引起油膜压力的变化;织构位于不同的位置时对圆形微凹坑织构滑动轴承的油膜压力的影响是不同的,对于不同间距和深度的织构,当织构位于升压区时,动压滑动轴承具有较好的润滑、承载性能,而织构位于降压区和全织构时不利于轴承承载。  相似文献   

6.
以球形凹坑织构动压滑动轴承为对象,基于流体动压润滑机理,建立含有球形凹坑织构的动压滑动轴承数学模型,推导轴承油膜厚度方程,并采用有限差分法求解Reynolds方程,借助MATLAB软件分别研究织构间距、织构深度等参数对动压滑动轴承承载特性的影响规律。结果表明:当织构深度一定时,存在最优织构间距使得动压滑动轴承的承载性能最优;当织构间距一定时,存在最优织构深度使得动压滑动轴承的承载性能最优。  相似文献   

7.
从目前的研究来看,织构的深度和载荷对油膜的润滑性能具有显著的影响,然而,在载荷变化的情况下,润滑膜的最小膜厚和黏性阻力是一个动态变化的过程。因此不同载荷下,最佳织构深度的选取还需系统地进行分析。通过建立沟槽型织构流体润滑模型,分析了织构的深度以及承载力对摩擦副的油膜厚度、压力、剪切力、以及摩擦因数的影响。结果表明:在承载力一定时,油膜厚度随织构深度的增加呈先增大后减小的趋势。在89 N载荷下时,存在最佳油膜厚度6.4184μm,此时织构深度为2.97μm,摩擦因数为0.0162。  相似文献   

8.
依据流体动压润滑气穴两相流理论,运用计算机流体力学(CFD)方法,针对阶梯面滑动轴承流体动压润滑模型,直接求解N-S方程进行数值分析,考察阶梯面滑动轴承阶梯深度比、长度比、阶梯数和转速对承载承载特性的影响规律。分析结果表明,其他条件一定时,阶梯深度比相对长度比对轴承承载力的影响更显著,深度比为1.7,长度比为1.3,轴承承载力均处于最大,转速对轴承承载力影响呈线形增加,阶梯数对承载力的影响呈现先增加后减小的变化规律。  相似文献   

9.
基于计算机流动力学(CFD)理论,应用FLUENT软件,建立新型推力滑动轴承油膜润滑模型并进行仿真计算,研究油膜厚度、瓦块倾斜角度及环型油槽位置等因素对新型斜面推力轴承承载性能的影响规律。分析结果表明:新型推力滑动轴承承载力随油膜厚度的减小而增大,且油膜厚度越小,承载力提高越显著;在承载油膜厚度不变时,轴承承载力及油膜压力峰值均随轴瓦倾角的增加呈现先增加后减小的变化规律;环形油槽位置外移轴承承载力增加,合理的环形油槽位置对承载力提高影响显著。  相似文献   

10.
建立不同结构参数的螺旋面瓦推力滑动轴承润滑模型,并用FLUENT软件进行仿真计算,研究油膜厚度、瓦面螺距以及转速对轴承承载性能的影响规律,为螺旋面瓦推力轴承的设计提供理论基础。结果表明,油膜最高温度随着螺距以及油膜厚度的增加而减小;轴向承载力随着油膜厚度的增加而降低,当最小油膜厚度和转速固定时,存在最优的瓦面升高比使得轴承承载力最大,瓦面升高比为1.4;油膜最高温度与承载力均与转速呈直线型关系;螺旋面瓦的承载力远高于平面瓦。  相似文献   

11.
脂润滑轮毂轴承弹流润滑数值分析   总被引:4,自引:1,他引:3  
基于Ostwald模型建立脂润滑控制方程,运用多重网格法求得等温线接触脂润滑弹性流体动力润滑数值解,得到钢球-沟道的压力分布、油膜形状及最小油膜厚度。针对轿车轮毂轴承的典型应用工况条件,分析工况参数对油膜压力分布和油膜形状的影响。结果表明:脂润滑弹流膜具有与油润滑膜相同的二次压力峰和出口颈缩现象。在轿车轮毂轴承可能的承载条件下,随着载荷的减小,二次压力峰的高度降低,其位置向入口区移动;一定承载条件下,速度增加时,膜厚相应增加,油膜的平行部分缩短,二次压力峰的高度增加,其位置也向入口区移动;一定承载和卷吸速度下,润滑脂流变参数增大时,二次压力峰的高度升高,其位置向入口区移动,膜厚相应增加。  相似文献   

12.
对水润滑轴承内部由于凹槽不同而形成的不同形貌动压流体域进行数值分析。借助ANSYS建模模块的流体自动生成技术,建立不同偏心条件下稳态动压流体域;利用ANSYS CFX专业流体分析软件,对直槽和螺旋槽水润滑轴承动压流体域进行稳态数值仿真,得出偏心率、转速、水膜形貌对流场动压效果的影响;对流体内所产生的漩涡的流速和压力进行理论分析和仿真分析验证,得到不同形貌水槽内部的漩涡强度。结果表明:动压流体域流场压力会随着转速、偏心率的增加而增加,承载力也随之增加;动压流体域内部由于形貌的改变,动压效应不同,沟槽对流体域的影响较为明显,直槽的流体域承载能力较大,螺旋槽的局部压力较大;在沟槽内部出现明显的漩涡效应,有利于泥沙等杂质的流出,螺旋槽的涡流效应要明显高于直槽,对排污更有效。  相似文献   

13.
为改善人工髋关节表面的摩擦学性能,在人工髋关节表面设计球形凹坑微织构;建立人工髋关节微织构表面的流体动压润滑模型,利用CFD软件ANSYS Fluent对微织构表面流体动压进行数值分析,得到摩擦副表面相对滑动时产生的油膜平均承载力以及摩擦因数,并分析表面微织构参数对摩擦学性能的影响。结果表明:在给定的织构参数范围内,平均承载力随深径比的增加呈现出先降低后升高再降低的趋势,随面积密度的增加呈先升高再降低的趋势;摩擦因数随深径比和面积密度增加的变化趋势与平均承载力相反;织构的最优参数分别为深径比0.06,面积密度25%。因此,在人工髋关节表面设置合适参数的球形凹坑微织构可以提高油膜平均承载力和降低摩擦因数,从而起到减小关节的摩擦磨损提高人工关节使用寿命的作用。  相似文献   

14.
为揭示液体黏性传动中摩擦片表面沟槽对传动性能的影响机制,根据流体动力学原理,结合油膜承载力和传递扭矩的计算模型,在建立油膜物理模型的基础上,运用FULENT软件对不同宽度、深度和条数沟槽下的油膜承载力、传递扭矩及油膜温升进行数值模拟。结果表明:油膜承载力和传递扭矩均随沟槽宽度和深度的增加而减小;沟槽条数越多,油膜承载力越大,传递扭矩呈近似线性降低;油膜温度沿径向递增,在油膜流动速度不变情况下,通过增大沟槽的宽度、深度和条数可以有效减缓传动过程中油膜的温升。  相似文献   

15.
为研究短凹槽的润滑减摩机制,通过建立具有三角形截面短凹槽织构化平行滑块润滑理论模型,利用多重网格法求解润滑油膜压力分布,分析三角形截面短凹槽织构几何参数的变化对摩擦副表面的流体动压性能的影响规律。研究结果表明:短凹槽织构的长度对流体动压承载能力几乎没有影响;在特定的工况条件下,流体动压润滑效应随着凹槽宽度、深度与横向间距的增加而先增大后减小,分别存在最佳凹槽宽度、深度与横向间距使得流体动压润滑效应达到最大;流体动压润滑效应随着短凹槽织构纵向间距的减小而增大。  相似文献   

16.
通过设计方坑-半圆柱体叠加织构,建立了不同面积占有率、不同深度、不同角度的方坑-半圆柱体叠加织构的流体动压模型,探索叠加织构不同几何参数对流体动压分布和油膜承载能力的影响。仿真结果表明:随着织构面积占有率的变化,方坑-半圆柱体叠加织构油膜承载能力呈先增加后减小趋势,织构深度对油膜承载能力的影响较小,具有一定倾角的织构能够提升滑块的动压润滑性能;当织构中方坑及半圆柱体深径比不变时,面积占有率为36%时流体动压效果较优,平均摩擦系数最小;在织构面积占有率不变时,深度为0.15 mm,织构倾角30°时动压效果较优,此时织构化滑块表现出优良的摩擦学性能。研究结果为进一步提升织构化特征滑块的润滑性能提供参考。  相似文献   

17.
为揭示液体黏性传动中摩擦片表面沟槽对传动性能的影响机制,根据流体动力学原理,结合油膜承载力和传递扭矩的计算模型,在建立油膜物理模型的基础上,运用FULENT软件对不同宽度、深度和条数沟槽下的油膜承载力、传递扭矩及油膜温升进行数值模拟。结果表明:油膜承载力和传递扭矩均随沟槽宽度和深度的增加而减小;沟槽条数越多,油膜承载力越大,传递扭矩呈近似线性降低;油膜温度沿径向递增,在油膜流动速度不变情况下,通过增大沟槽的宽度、深度和条数可以有效减缓传动过程中油膜的温升。  相似文献   

18.
基于雷诺方程建立表面织构化滑动轴承润滑理论模型,探究不同织构参数(分布角度、深度、面积比、偏斜角度、长度)对钻头滑动轴承承载力和摩擦因数的影响规律.在油膜收敛和最小油膜厚度附近区域布置织构,有利于增加轴承表面润滑性能,而织构布置在油膜发散处反而会减小轴承承载力,增大摩擦因数.织构的最佳织构深度与轴承的工况相关,不同偏心...  相似文献   

19.
为了获得磨削后结构化鱼鳞表面的摩擦特性,首先设计拓扑结构化鱼鳞表面,然后对表面建立流体动压润滑模型,并利用流体仿真软件进行分析,研究对比磨削加工后不同粗糙度的单元鱼鳞凹坑的油膜承载力以及摩擦系数,并且整体分析结构化鱼鳞表面的压力和摩擦系数随油膜厚度变化的规律。研究表明:在给定的结构化表面参数范围内,磨削粗糙度越低的结构化鱼鳞表面单元的润滑效果越好;整体来看,结构化鱼鳞表面的润滑效果具有显著的累积效应;选择合适参数的结构化鱼鳞表面可以提高油膜承载力和降低摩擦系数,从而起到改善摩擦副润滑效果的作用。  相似文献   

20.
阶梯轴承平行间隙油膜承载机理   总被引:3,自引:0,他引:3  
使用面接触光干涉油膜厚度测量系统对阶梯轴承两平行平面间油膜厚度进行测量,试验中以静止的阶梯滑块平面和旋转的光学透明圆盘平面构成面接触润滑副,且两润滑平面始终保持平行,在不同的载荷条件下,对油膜厚度-速度曲线进行相关测量并对气穴现象进行观察。结果表明:测得的油膜厚度-速度曲线分为两个区,低速下的第I区油膜厚度对速度无明显依赖性,且厚度较薄;随速度增加油膜厚度发生阶跃性增长进入第II区,此时油膜厚度与速度在对数坐标下呈线性关系。不同的粘度和载荷对应的两个区的转化速度不同。对这一问题进行理论分析,得出与试验结果相同的结论。第I区的承载力主要由表面粗糙度产生的局部流体动压效应引起的,第II区则主要由阶梯轴承的流体动压效应产生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号