共查询到20条相似文献,搜索用时 28 毫秒
1.
2.
3.
4.
利用陶瓷膜组件回收烟气中水分及余热有望成为火电厂节能节水的一条有效途径。为了探究陶瓷膜组件回收水分及余热的性能,本文采用孔径2μm的陶瓷膜管组成的陶瓷膜组件进行了烟气中水蒸气及余热的回收实验,研究了不同烟气温度(40~100℃)、烟气流量(320~440 m3/h)、冷却水温度(11~15℃)和冷却水流量(0.62~0.72 m3/h)对陶瓷膜组件回收水与余热性能的影响。实验结果表明:回收水速率随烟气温度及烟气流量的升高而增大,随冷却水温度的增大而降低,而冷却水流量对回收水速率影响不大;烟气平均对流凝结努塞尔(Nu)数和Zhukaukas关联式所得Nu数均随烟气温度、烟气流量的升高而增大,且烟气平均对流凝结Nu数始终大于Zhukaukas关联式所得Nu数;热回收效率随烟气温度及冷却水流量的增大而提高,随冷却水温度的增大而降低,而随着烟气流量的增大,热回收效率先提高后降低。该研究结果可为陶瓷膜组件在火电厂实际应用提供了借鉴。 相似文献
5.
某330 MW机组的排烟温度较高,影响电除尘器的安全和效率,同时也影响机组的安全运行。为降低锅炉排烟温度,合理利用烟气余热,采用烟气余热回收系统,即在空预器和电除尘器之间加入热管换热器,利用烟气余热对热管循环水进行加热,在轴封加热器出口引出一路凝结水通过板式换热器与热管循环水进行换热,经过板式换热器加热的凝结水与经过7、8号低压加热器加热的凝结水共同汇入6号低压加热器。通过实时数据系统采集烟气余热回收系统运行数据,进行相关运行性能的计算,不仅有效降低了锅炉排烟温度,而且提高了锅炉的经济性,还提高了机组的稳定性和安全性。 相似文献
6.
7.
电站锅炉烟气余热深度回收及烟气脱水是提高机组热效率、降低水耗率的重要途径之一。本文以某亚临界330 MW机组为对象,提出了烟气余热深度利用与烟气脱水的系统流程,研究了余热利用系统与回热系统的集成方案,基于等效焓降法计算了各方案的热力性能,并对关键参数进行了敏感性分析。结果表明:利用氟塑料烟气余热换热器(FGC1)和烟气脱水换热器(FGC2)可实现烟气余热的深度回收及水分的脱除,降低了机组的发电煤耗率和水耗率;闭式水互联的串并联集成方案d性能最优,设计工况下可节约发电标准煤耗率3.03 g/(k W?h),回收冷凝水5.7 t/h;随着FGC1出口烟气温度的下降,煤耗率增加,但其换热面积也增加,当烟气温度一定时,方案d所需换热面积最小。 相似文献
8.
湿式相变凝聚器协同多污染物脱除研究 总被引:2,自引:0,他引:2
燃煤发电机组多污染物协同脱除技术将是未来火电领域的研究热点,为此研发并设计了一种高湿烟气环境中实现细颗粒凝聚和多污染物协同脱除的新型装置——湿式相变凝聚器(Wet Phase Transition Agglomerator,WPTA)。该装置经过实验室实验、中试实验和某660 MW燃煤机组全烟气工况工程实验研究,发现其具有优良的细颗粒物凝聚能力和多种污染物协同脱除性能。中试实验结果表明,经过WPTA后,烟气中颗粒物的粒度分布曲线由单峰分布演变为双峰分布,且粒径在2 μm左右颗粒的峰值明显降低,粒径大于10 μm颗粒的峰值呈增加趋势。660 MW机组全烟气试验结果显示,满负荷下WPTA投运,PM2.5、PM1.0脱除效率分别比不投运提高约5个百分点、15个百分点;同时实现了烟气中Hg、As、Ba、Ga、Li、Mn、Sr和Ti元素的高效脱除, 其中Hg与As的脱除能力分别提高了4.18倍和2.82倍。研究结果表明,该湿式相变凝聚协同多污染物脱除技术能很好地实现燃煤机组污染物超低排放。 相似文献
9.
10.
吉林吉长电力有限公司2号锅炉由于机组建设时间较长,受场地制约,只能选择换热效率高的换热器,才能实现在有限空间内将排烟温度降低到预期目标,因此该公司确定了相变式换热器技术作为研究方向。改造后,相变换热与单相流换热相比,其传热系数同比提高3~5倍,综合考虑烟道换热器换热管内外部因素,其综合传热系统为单相流换热的1.5~2.4倍。采用相变式换热器可以实现在有限空间内实现大幅度降温的效果。 相似文献
11.
为提高能源利用效率,降低火电机组供电煤耗,提出一种可同步回收锅炉烟气和引风机小汽轮机(小机)蒸汽余热的集成式一体化节能装置。该系统以热媒水作为能量传递转换的载体,通过设置独立的小机凝汽器与低温省煤器,协同回收汽轮机排汽及锅炉排烟2种不同形式的余热,升温后的热媒水进入暖风器,将热量统一利用,加热入炉一次风、二次风。最终,借助热媒水的强制循环流动,实现了蒸汽-烟气余热的协同回收联合利用,机组运行经济性得到进一步提升。实际运行结果表明,该余热联合利用系统具有投用灵活、季节适应性强、节能效果显著等优势,应用后机组发电标煤耗降低3.948 g/(kW·h),脱硫系统减少耗水量20 t/h,单台机组年收益增加约360万元。本文相关经验可供后续同类机组参考。 相似文献
12.
13.
14.
15.
针对内燃机排气的特点,构建了一种新型冷热电联产(CCHP)系统来进一步回收排气余热,达到节能减排的目的。该CCHP系统由1个简单回热超临界二氧化碳(S-CO2)布雷顿循环、1个喷射式制冷循环和1个热水器组成。为了评估系统性能,建立了系统的热力学模型,并比较了单一S-CO2循环与CCHP系统的性能参数。此外通过参数分析,研究了压缩机出口压力、透平1进口温度以及制冷蒸发温度3个重要参数对于系统性能的影响。最后,以系统同时产生最大净输出功和制冷量(CCP模式)或同时产生最大净输出功和供热量(CHP模式)为优化运行模式,对系统进行了多目标优化。结果表明:CCP模式下,系统净输出功、制冷量、供热量之和为546.87 kW,热效率和?效率分别为45.81%和50.55%;而在CHP模式下,同样的性能指标则分别为501.35 kW、41.95%和50.46%。 相似文献
16.
《热力发电》2018,(11)
火力发电是高耗能、高耗水行业,回收火电厂烟气中水分及余热能起到显著的节能、节水效果。通过单根20 nm孔径陶瓷膜进行烟气中水分及余热回收实验,研究不同烟气流量(4~18L/min)、烟气温度(50~70℃)、烟气相对湿度(40%~100%)和冷却水流量(0.5~2.0 L/min)对回收性能的影响。结果表明:水回收速率随烟气流量、烟气温度、烟气相对湿度增加而上升;水回收效率随烟气温度、烟气相对湿度增加而上升,随烟气流量增加而下降;冷却水流量变化对水回收速率和效率没有影响;烟气对流凝结努塞尔数(Nuf)用于评价烟气在陶瓷膜内的传热性能,其随烟气流量、烟气相对湿度、冷却水流量增加而升高;大烟气流量工况时Nuf随烟气温度增加而升高,小烟气流量时Nuf随烟气温度增加呈先升高后降低趋势。研究结果对于陶瓷膜在火电厂烟气中实际应用具有理论指导意义。 相似文献
17.
《电站系统工程》2016,(2):34-36
某台330 MW机组锅炉尾部烟道加装烟气余热回收利用装置,利用烟气余热加热机组凝结水,降低排烟温度。将锅炉排烟温度由140℃降到80℃的最佳脱硫温度,实现排烟余热的第一次提取。从脱硫塔出来的烟气,再进入烟气脱水装置,利用静电将烟气中的水分脱去,同时回收水分的凝结潜热,实现排烟温度余热的第二次提取。试验结果表明:烟气余热回收热量为25.39 MW,回收烟气中水蒸汽凝水量6.4 t/h,热耗降低83.29 k J/k Wh,折合发电煤耗3.09 g/k Wh。此余热装置采用氟塑料换热器解决了换热管束的耐腐蚀和积灰结垢问题且技术成熟,可以在余热回收装置中推广应用。 相似文献
18.
19.
回收烟气余热的特种耐腐蚀塑料换热器的性能分析 总被引:1,自引:0,他引:1
运用特种塑料材料的换热器可以解决烟气余热回收中的低温腐蚀问题,扩大热回收的温度范围。结合1 000 MW机组烟气余热回收工况,分析了氟塑料管束式换热器和导热塑料翅片管换热器的性能,比较了两者在传热系数、换热面积、换热器体积、流动阻力等方面的差异。尽管氟塑料换热器在传热系数和材料消耗方面具有优势,但翅片管换热器整体体积更小,且管件数量远小于氟塑料换热器。在此基础分析了污垢热阻和材料热导率对翅片管换热器的影响,发现污垢热阻会造成换热器性能20%~30%的变化,材料热导率则需要达到15~20 W/(m?K)的阈值,才能实现较好的换热性能。 相似文献
20.
锅炉尾部排烟温度一般在120~140℃,其热损失可达锅炉输入总热量的3%~8%,因此对锅炉尾部排烟余热进行回收意义重大。在对常规余热利用系统换热特性进行深入分析的基础上,提出一种新型低温烟气余热优化利用系统,该系统利用机炉两侧低品位热能预热入炉空气,提高空气预热器入口风温的同时,减少了空气预热器中烟气-空气换热量,并将置换出的这部分热能引入回热系统加热给水和高温凝结水,节约部分高级抽汽,进而增加机组出功。以某典型1000 MW燃煤机组为例,结合热力学的相关原理深入分析了优化系统的节能特性。研究结果表明:优化方案中机组净出功较常规方案增加了20.23 MW,供电煤耗降低值则由常规方案的0.93g/kWh提高到5.09 g/kWh,同时全厂火用效率由常规方案的43.58%提高到43.92%。综合分析,系统节能改造收益显著。 相似文献