首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究倾斜织构表面的摩擦学性能,建立单微孔倾斜织构的二维计算模型并且考虑空化效应的影响。利用CFD方法模拟不同倾斜角、油膜厚度和织构深度条件下空化面积、织构表面压力分布和油膜承载力的变化情况。结果表明:与平行织构表面不同,在倾斜织构表面中,与不考虑空化相比,考虑空化效应时油膜承载力不一定更大,在倾斜角一定时,与油膜厚度有关;织构深度会影响承载性能,每个计算模型都会存在一个最优织构深度使得承载力最大,且最优承载力会随倾斜角的增大而增大,随油膜厚度的增大而减小;最优承载力增长率的变化趋势与空化效应有很大关系,空化效应较强时,最优承载力增长率会随着倾斜角的增大而减小,空化效应较弱时,最优承载力增长率会随着倾斜角的增大而增大。  相似文献   

2.
为提升平行滑动轴承的油膜承载力,在平行滑动轴承上加工了间距为等差数列的槽织构,并建立轴承的油膜模型;基于入口吸入理论和连续性方程,对轴承的油膜承载力进行解析计算。解析解表明,在各个槽都空化的前提下,与均匀分布的槽织构相比,槽间距为等差分布的槽织构能提升油膜承载力,且油膜承载力随织构等差分布的公差的增大呈抛物线形式增大。基于Fluent多相流空化模型,计算了带有等差分布微槽轴承的油膜承载力,并结合解析计算和数值计算结果分析不同因素对油膜承载力的影响。结果表明:在满足空化条件时,解析计算与数值计算结果均显示出相同规律,验证了解析计算的正确性;与均布槽织构比较,在不同压差下,等差分布槽织构最大使油膜承载力提升了32.57%,在不同槽深时,等差分布槽织构最大使油膜承载力提升了24.43%,在不同油膜厚度下,等差分布槽织构最大使油膜承载力提升了27.51%。  相似文献   

3.
为研究在流体润滑条件下,表面微织构形貌参数对润滑性能的影响,建立考虑空化效应的单织构三维计算模型。用CFD方法模拟织构在不同深度、面积密度和表面形状条件下,油膜承载力、摩擦因数和压力分布的变化情况。结果表明:随着织构深度(面积密度)的增加,油膜的承载力先增大后减小,摩擦因数先减小后增大,即织构存在最优的深度和面积密度使得流体动压润滑性能最优;随着上壁面滑移速度的增大,织构的最优深度有减小的趋势,而最优面积密度趋于稳定;设计具有汇流作用的织构表面形状可以提高油膜的承载力,且速度越大,改善润滑的效果越明显。  相似文献   

4.
采用数值模拟方法,分析在不同速度和不同结构参数条件下微凸体织构的摩擦副润滑过程,研究在流体润滑条件下摩擦副表面的微凸体织构诱导空化效应的规律。结果表明:增加表面之间相对运动速度、微凸体织构的宽度或高度、微织构前段和后端的角度,均能导致空化区域面积增加,〖JP2〗使诱导空化现象更加明显;空化效应的出现抑制了微凸体后端负压区压力的降低,使得摩擦副的承载能力提高;空化效应可使界面之间由液体润滑转变为局部的气体润滑,使得界面之间摩擦因数的数值明显减小;考虑空化效应时,具有微凸体织构的摩擦副的承载力比不考虑空化效应时提高了35~74倍,摩擦因数降低了97.5%~98.7%。微凸体织构诱导产生的空化效应对提升承载力与降低摩擦因数的作用,明显大于微织构形成的流体动压作用,因此可以认为微织构诱导产生空化效应是微织构摩擦表面的一种重要承载机制。  相似文献   

5.
为探究齿面沟槽织构参数对渐开线圆柱直齿轮润滑性能的影响,简化齿轮啮合模型选取并建立单元沟槽CFD仿真模型,通过分别求解未考虑和考虑空化效应的2种仿真模型,获得不同沟槽尺寸参数对模型润滑性能的影响规律。结果表明:沟槽织构的存在改变了流体域油膜压力分布状态,具有更高的油膜承载力和更好的动压性能;不考虑空化效应时,油膜承载力大小与沟槽宽度的变化密切相关,而受沟槽深度变化的影响较小,沟槽织构浅且宽时齿面具有更好的润滑性能;考虑空化效应后,表面润滑性能随沟槽宽度与深度的变化而动态变化,相较于不考虑空化效应,沟槽宽度更窄、深度更深时齿面具有更好的润滑性能;在沟槽深度与宽度均较小时,空化效应对动压性能的影响不是很大,在沟槽深度较小而沟槽宽度较大时,空化效应对动压性能的影响较大;而在沟槽深度较大时,空化效应对动压性能的影响始终较大,且不受沟槽宽度变化的影响。  相似文献   

6.
考虑空穴效应和轴瓦界面滑移效应,运用Fluent建立滑动轴承两相流模型,研究不同滑移区域、转速和黏度对油膜承载力及气穴分布的影响规律。研究表明:复合滑移表面比完全滑移和无滑移表面更能提高油膜压力和承载力,同时复合滑移表面能降低高体积分数空穴比例;转速增加能提高油膜压力和承载力,但油膜的高体积分数空穴比例会增加;黏度增加虽然能增加轴承承载力,但同时也加剧了发散楔区域的空化现象,使油膜稳定性下降。  相似文献   

7.
以动压滑动轴承为研究对象,根据流体动压润滑原理,建立圆形微凹坑织构化动压滑动轴承油膜数学模型,推导织构化滑动轴承油膜厚度修正公式;结合Reynolds方程有限差分法的求解方法,分析全织构和织构化参数(间距、深度)对动压滑动轴承圆周方向压力分布的影响。结果表明:分布在轴承上的全织构会引起油膜压力的变化;织构位于不同的位置时对圆形微凹坑织构滑动轴承的油膜压力的影响是不同的,对于不同间距和深度的织构,当织构位于升压区时,动压滑动轴承具有较好的润滑、承载性能,而织构位于降压区和全织构时不利于轴承承载。  相似文献   

8.
为了研究弹性材料表面微织构对摩擦副空化现象和润滑特性的影响,建立考虑空化效应的二维弹性织构计算模型,采用流固耦合方法计算润滑流场与材料变形之间的相互作用。对比刚性材料表面微织构,从弹性模量、滑动速度、微织构深度以及织构间距等方面分析弹性材料表面织构对摩擦副润滑性能的影响,通过实验验证模拟结果的准确性。结果表明:弹性织构摩擦副比刚性织构摩擦副摩擦因数更小,润滑性能更好;存在最优织构深度,使得弹性织构摩擦副的摩擦力最小且承载力最大;适当增大滑动速度以及织构间距可以提高弹性摩擦副的润滑性能;随着弹性模量的降低,弹性变形和油膜厚度增加,空化现象更为显著,摩擦副的润滑性能得到提升。  相似文献   

9.
为研究不同的滑移情况对圆柱形凹坑织构滑动轴承摩擦力的影响,建立含有圆柱形凹坑织构的滑动轴承在不同界面滑移状态下的摩擦力计算模型,探究影响织构化滑动轴承摩擦力的参数,并借助ANSYS分析不同滑移情况下界面滑移对圆柱形凹坑织构滑动轴承摩擦力的影响规律。结果表明:织构化滑动轴承的摩擦力主要是由轴颈线速度、油膜滑移比、轴承的进出油口压力、织构处油膜压力、织构深度、油膜厚度和承载力决定;不同滑移情况下织构模型的摩擦力均小于无织构模型;且在上下表面均滑移时,圆柱形凹坑织构在出口位置时表现出最优的承载和减摩效果;适当地增加圆柱形凹坑织构的深度可以改善模型的摩擦性能,但是过深的凹坑织构并不能发挥出其性能。  相似文献   

10.
不对中径向滑动轴承微凹槽织构数值分析   总被引:2,自引:0,他引:2  
为研究凹槽位置、深度、倾斜角和面积率等因素对不对中径向滑动轴承摩擦学性能的影响,基于Reynolds方程建立滑动轴承的摩擦润滑数学模型,采用有限差分法迭代求解不同凹槽微织构参数影响下的油膜压力,计算不同织构参数下轴承的承载力、摩擦力和端泄流量等。计算结果表明:凹槽微织构分布在升压区且轴向占比约50%时轴承承载力较高;相比于光滑轴承,微织构轴承的摩擦力更低,且凹槽的轴向占比和深度越大摩擦力越小;微织构对轴承的承载力具有削弱和增强的双重可能,存在最优的凹槽周向和轴向占比、深度和倾斜角使得轴承在较小摩擦力下具有更高的承载力;凹槽微织构的面积率与轴承承载力和摩擦力呈线性相关;轴承的不对中程度越小时,在光滑轴瓦表面加工合适参数的微织构时越有利于提高轴承的摩擦学性能。  相似文献   

11.
针对带有表面微织构的径向动压轴承,采用高斯随机粗糙表面模拟轴瓦表面粗糙度,建立了表面微织构和粗糙度耦合作用下轴承油膜特性数学模型;在此基础上,计算不同偏心率及转速下油膜静、动特性参数,并分析了粗糙度对织构化动压轴承压力分布、失稳转速等的影响。结果表明,各偏心下适当的表面粗糙度能够提升织构化动压轴承油膜压力及承载能力;摩擦力及平均温升亦有上升,且粗糙度造成织构化动压轴承失稳转速降低。将理论结果与M2000型摩擦磨损试验机测试结果进行对比,验证了模型的合理性。研究对同时计入粗糙度和织构的滑动轴承润滑机理研究有一定的借鉴意义。  相似文献   

12.
何霞 《润滑与密封》2018,43(6):35-42
针对织构分布角度对织构润滑减磨性能影响的问题,基于Reynolds方程建立单一织构全油膜润滑条件下的动压润滑理论模型,求解不同分布角度下织构表面动压润滑性能,并计算织构表面空化单元数目,从织构表面空化效应角度分析织构分布角度对织构动压润滑性能的影响。开展牙轮钻头滑动轴承模拟工况下单元摩擦学实验,通过对比摩擦副试样表面摩擦学性能分析织构分布角度的影响。数值仿真结果表明,织构表面空化离散单元数目越多,其动压润滑性能越好;单元实验研究结果则表明,基于捕获磨屑、减小二次磨损的作用机制,织构单元垂直于滑移方向的边长越长,织构表面的摩擦磨损性能越好。  相似文献   

13.
为研究油液中不同空气含量对双盘配流式径向柱塞泵织构化配流副动压润滑效应的影响,建立单个二维表面织构微凹坑计算模型,采用CFD数值模拟的方法,分别从不考虑空化效应和考虑空化效应两种情况分析计算油液中不同空气体积分数对动压力大小产生的影响。研究结果表明:油液中空气含量越低,微织构产生的动压力越大、动压润滑效应越明显;不考虑空化效应时油液中空气体积分数的大小只改变动压力的大小,不改变动压力的变化规律;考虑空化效应时,油液中空气体积分数的大小不仅改变动压力的大小,动压力曲线斜率也发生变化。在相同空气含量下考虑空化效应时微织构产生的动压力更大、润滑性能更好。  相似文献   

14.
基于雷诺方程建立表面织构化滑动轴承润滑理论模型,探究不同织构参数(分布角度、深度、面积比、偏斜角度、长度)对钻头滑动轴承承载力和摩擦因数的影响规律.在油膜收敛和最小油膜厚度附近区域布置织构,有利于增加轴承表面润滑性能,而织构布置在油膜发散处反而会减小轴承承载力,增大摩擦因数.织构的最佳织构深度与轴承的工况相关,不同偏心...  相似文献   

15.
表面织构技术是在材料表面制备出具有一定排列规则的几何阵列的技术。该技术能够有效改善材料表面的摩擦学性能,现已越来越广泛地应用于众多工程领域。为了研究表面微织构对于材料表面摩擦学性能的影响,应用ANSYS Fluent软件分别对相同区域内流经光滑表面及V形、三角形、矩形、圆形微织构表面的油膜进行仿真计算。分析对比了不同形貌的微织构对于油膜内部压力分布的影响。结果表明:微织构的存在能够使油膜内部压力产生明显变化,油膜内部有回流产生,使摩擦副表面产生了流体动压效应。油膜内部产生了正压区与负压区,当油膜内部压力低于其自身的饱和蒸气压时,会有空化效应产生。为在材料表面应用微织构提升摩擦学性能提供了良好的理论基础。  相似文献   

16.
为探究齿面微凹坑参数,如形状、深度和宽度等对准双曲面齿轮润滑性能的影响规律,建立简化的齿对接触二维平面润滑模型,利用Fluent软件仿真分析了微凹坑参数变化时油膜承载力、壁面摩擦力的变化规律。结果表明:未考虑空化效应时,宽度值为160μm、深度值为4.5μm的方形凹坑和梯形凹坑具有相近的齿面润滑性能改善效果;考虑空化效应对两者润滑性能的影响发现,方形凹坑获得了更大的油膜承载力和更小的壁面摩擦力。方形凹坑具有更明显的空化效应,能有效改善齿面润滑性能。  相似文献   

17.
表面织构分布参数对流体动压润滑的影响及其数值优化   总被引:1,自引:0,他引:1  
为获得最优的表面织构分布参数,以球冠凹坑织构模型为研究对象,选择不等边的矩形计算控制单元,建立水平和垂直分布距离(密度)不等的表面织构分布模型。根据流体动压润滑原理,基于Navier-Stokes方程建立二维Reynolds方程,并通过多重网格方法进行求解,以平均油膜压力和油膜压力峰值作为动压润滑性能的评价指标,研究表面织构分布间距对油膜压力数值大小和油膜压力稳定性的影响,并研究表面织构分布间距对油膜压力的影响机制。结果表明:控制区域平均油膜压力随凹坑控制单元边长的增大先逐渐增大再缓慢减小,当织构单元边长为凹坑半径的3.4倍,长宽比为0.82时,可以获得最优的油膜承载力;适当增大边界凹坑的控制单元,使边界处凹坑左右侧间距都在凹坑半径的3.4倍左右时,可以有效地提升油膜压力稳定性;泵吸作用和影响区域占控制区域比率的变化导致表面织构分布间距对油膜压力产生了影响。  相似文献   

18.
以计入表面微凹坑的动压滑动轴承为研究对象,基于凹坑流量平衡建立了油膜特性数学模型,采用差分法离散求解得到了轴承静、动特性及稳定性参数随微凹坑深度、面积率、形状和排布方式的变化规律,对比了光滑表面的轴承特性计算结果.结果表明,凹坑形状、分布、尺寸等因素显著影响油膜承载力、流量、偏位角、平均温升等静特性参数和刚度、阻尼等动特性参数;其中,最优的微凹坑深度使得油膜承载能力最大提高了15.3%,失稳转速最大提升了6.9%.针对计入表面微凹坑动压轴承的研究具有参考价值.  相似文献   

19.
计入空穴效应,运用Fluent两相流模型分析三油槽滑动轴承湍流状态下的油膜特性,研究不同进油压力和润滑油黏度对油膜承载力和气穴的影响。研究表明:提高进油压力可以提高轴承的承载力、减少空穴区域的面积和高比例的气穴,从而防止完全空化的发生;润滑油黏度的增大虽然增加了轴承的承载力,但也加剧了油膜发散区域的空穴现象,并且增加了高比例的气穴比例,在实际应用中应合理地选择润滑油的黏度。  相似文献   

20.
考虑织构化表面润滑介质流场的空化效应,建立具有不同截面微结构特征的有限元计算模型,利用Fluent14.0软件进行计算,研究表面织构几何形状及尺寸对流体润滑性能的影响。结果表明:考虑惯性项作用时,表面微织构会产生额外的承载力,而且随着速度提高,承载力会进一步增大;考虑空化效应时,承载能力增大近一个数量级,更符合文献中的试验结果;与三角形、矩形及椭圆织构截面相比,球缺截面的织构空化面积更小,更有利于提高承载;微结构深度和宽度尺寸影响摩擦和承载性能,研究表明,减小织构深度、增大织构宽度有利于改善润滑性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号