首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为改善广泛应用于船舶苛刻环境无油/脂润滑摩擦配副材料的摩擦学性能,将聚四氟乙烯(PTFE)按不同质量分数与钢背超高分子量聚乙烯纤维织物复合材料结合,研究它与45钢盘在变转速环环端面干摩擦状态下的摩擦学特性。对试验过程中摩擦因数及磨损量进行测量,利用表面轮廓仪、扫描电子显微镜与超景深显微镜对复合材料及对磨件磨损表面形貌进行了观察与分析。结果表明:所有填充PTFE的复合材料摩擦学性能均表现优异,随着PTFE含量的增加,复合材料摩擦性能变差,其中1 %(质量分数) PTFE填充复合材料综合摩擦性能最好,在试验工况下主要发生磨粒磨损,PTFE填充量较高的复合材料在高速下由于团聚及摩擦热量积聚主要经历黏着磨损与疲劳磨损。  相似文献   

2.
硫酸钙晶须填充UHMWPE复合材料的摩擦磨损性能   总被引:2,自引:0,他引:2  
以硫酸钙晶须(CSW)作为填料填充改性超高分子量聚乙烯(UHMWPE),采用热压成型法制备了不同硫酸钙晶须含量的UHMWPE/CSW复合材料;在销-盘摩擦磨损试验机上考察了硫酸钙晶须对UHMWPE/CSW复合材料摩擦学性能的影响,利用扫描电子显微镜对UHMWPE复合材料的磨损表面进行了微观分析。结果表明:随着硫酸钙晶须填充量的增加,复合材料的硬度逐渐增大,耐磨性能逐渐增加,摩擦因数逐渐减小;当硫酸钙晶须填充质量分数为20%时,UHMWPE/CSW复合材料的摩擦学性能最好。  相似文献   

3.
聚苯酯填充聚四氟乙烯基超声电机转子摩擦材料性能研究   总被引:2,自引:0,他引:2  
制备聚苯酯填充聚四氟乙烯基超声电机转子摩擦材料,探讨聚苯酯含量对聚四氟乙烯基摩擦材料力学和摩擦学性能以及对应超声电机性能的影响。结果表明:聚苯酯能够提高PTFE复合材料的硬度和弹性模量;随着聚苯酯含量的增加,复合材料的摩擦因数和磨损量均先减小后增大,在本文研究范围内,当聚苯脂质量分数为5%时,复合材料的摩擦因数最小,磨损量最低,且使用该复合材料时超声电机的堵转力矩和空载转速均较高,综合性能较优。  相似文献   

4.
粉煤灰增强树脂基复合材料力学性能和摩擦学性能的研究   总被引:5,自引:1,他引:4  
采用热压成型的方法制备了掺粉煤灰的树脂基复合材料,并对该复合材料的力学性能、断面显微结构及摩擦学性能进行研究.结果表明:掺入粉煤灰后,树脂基复合材料的各项力学性能均变好,其摩擦学性能符合GB5764-98的要求,并随粉煤灰掺量的增加,摩擦因数稳定性增加,磨损率减小,热稳定性增加.扫描电镜分析表明:掺粉煤灰改性后的树脂基复合材料内部孔隙率减少,密实度增加;粉煤灰能促进摩擦表面摩擦膜的产生,从而有效地改善了复合材料的摩擦学性能.  相似文献   

5.
采用压制烧结方法制备了石墨质量分数为10%的铜基复合材料,并将其与QCr0.5铜合金组成摩擦副,在自制的销盘摩擦磨损试验机上进行了载流摩擦磨损试验,研究了摩擦速度和电流密度对复合材料起弧率、载流效率以及摩擦学性能的影响,并对复合材料的磨损形貌进了观察。结果表明:随着电流密度的增大,复合材料的起弧率和磨损率逐渐增大,摩擦因数和载流效率逐渐降低;随着摩擦速度的增大,复合材料的起弧率、摩擦因数和磨损率均逐渐增大,而载流效率则逐渐减小;随着电流密度和摩擦速度的增大,复合材料在摩擦过程中的烧蚀变得越发严重,表面变得更加粗糙。  相似文献   

6.
利用高密度聚乙烯与不同浓度愈创树脂混合制备系列新型水润滑尾轴承材料,在CBZ-1摩擦磨损试验机上考察其在模拟海洋环境下的摩擦性能,对比分析不同配比材料摩擦因数和磨损量以及磨损表面形貌的变化情况。结果表明,在高密度聚乙烯中加入适量的愈创树脂可很好地改善材料的自润滑性能,且随着愈创树脂含量的增加,材料的摩擦因数和磨损率先减小后增加,这是因为愈创树脂在摩擦过程中会因受热软化分泌出一定量的油脂,有助于摩擦副表面水膜的形成,从而提高材料的摩擦磨损性能;适量愈创树脂的加入可以有效降低材料的表面粗糙度,改善摩擦副的表面性能,从而提高材料的工作稳定性。  相似文献   

7.
为探究橡胶含量对混杂纤维增强橡胶基复合材料中低速摩擦学性能的影响,在一种成熟橡胶基摩擦材料配方的基础上,通过调整配方中的橡胶含量,制备不同橡胶含量的混杂纤维增强橡胶基复合材料,对其进行力学性能、中低速下摩擦学性能进行测试,并通过观测不同试样摩擦表面的微观形貌,分析其摩擦磨损机制。结果表明:随着橡胶含量增加,复合材料的交联密度增大,复合材料硬度、密度呈先升高后降低的趋势;随着橡胶含量增加,复合材料的摩擦因数和摩擦因数稳定性呈先降低后升高再降低的趋势,质量磨损率呈先升高后降低的趋势;橡胶基复合材料在摩擦过程中存在黏着磨损和磨粒磨损,以黏着磨损为主。综合比较,橡胶质量分数为28%时,复合材料的摩擦因数适中、且动静摩擦因数接近,可有效抑制制动噪声产生。  相似文献   

8.
研究了钢背衬碳纤维织物/环氧复合材料在环-环端面干摩擦状态下的摩擦学特性,考察了MoS2与石墨粉及其配比、衬层厚度、法向载荷对衬层干摩擦性能的影响,用扫描电子显微镜对衬层的磨损表面及对偶件45^#钢环表面进行了观察与分析。结果表明:厚度为1.5mm的试环衬层在摩擦过程中主要表现出粘结磨损特性,而含20%(质量分数)MoS2粉的0.6mm衬层表现出疲劳磨损与磨粒磨损特性。摩擦因数-时间特性曲线表明MoS2粉在降低衬层摩擦因数的同时能够抑制环氧树脂向对偶钢环表面的粘结;石墨对衬层的减摩效果优于MoS2粉,但摩擦温升引起树脂向偶件表面转移增多使得减摩效果大大降低;质量分数为33%的MoS2与石墨粉衬层表现出最佳的摩擦学性能,衬层摩擦因数具有随载荷先减小后上升的趋势。  相似文献   

9.
利用高密度聚乙烯与不同浓度愈创树脂混合制备系列新型水润滑尾轴承材料,在CBZ 1摩擦磨损试验机上考察其在模拟海洋环境下的摩擦性能,对比分析不同配比材料摩擦因数和磨损量以及磨损表面形貌的变化情况。结果表明,在高密度聚乙烯中加入适量的愈创树脂可很好地改善材料的自润滑性能,且随着愈创树脂含量的增加,材料的摩擦因数和磨损率先减小后增加,这是因为愈创树脂在摩擦过程中会因受热软化分泌出一定量的油脂,有助于摩擦副表面水膜的形成,从而提高材料的摩擦磨损性能;适量愈创树脂的加入可以有效降低材料的表面粗糙度,改善摩擦副的表面性能,从而提高材料的工作稳定性。  相似文献   

10.
采用共混-冷压-烧结-整形的工艺制备有机物填充聚四氟乙烯(PTFE)复合材料,考察相同含量的不同有机填料对PTFE复合材料力学性能和摩擦学性能的影响。结果发现,加入有机填料后,复合材料的拉伸强度降低,但硬度和压缩强度均提高;有机填料有效地改善了PTFE复合材料的摩擦学性能,其中,质量分数15%聚苯酯填充的PTFE复合材料减摩效果最好,质量分数15%聚酰亚胺填充的PTFE复合材料的耐磨损性能最优。相比之下,质量分数15%芳纶填充的PTFE复合材料摩擦磨损性能及力学性能最好,其耐磨损性能较纯PTFE提高了近400倍,而摩擦因数仅为纯PTFE的84%。其原因在于芳纶的加入有效地改变了摩擦机制,能形成均匀连续的转移膜,进而降低了磨损。  相似文献   

11.
通过双螺杆挤出熔融共混的方法制备剑麻纤维(SF)和低密度聚乙烯(LDPE)共同填充的聚甲醛复合材料,在HT-500型高温摩擦磨损试验机上考察其干滑动摩擦条件下的摩擦磨损性能,并通过扫描电子显微镜(SEM)观察其磨损表面形貌,分析磨损机制。结果表明:添加适量的LDPE能显著降低POM的摩擦因数和磨损率,当LDPE质量分数为5%时,复合材料的摩擦因数下降21.7%,磨损率降低10%;随SF质量分数的增加,POM/5%LDPE/SF复合材料的摩擦因数和磨损率呈现先增大后减小再增大的趋势,当SF质量分数为5%时,复合材料摩擦磨损性能优异,在转速为1 120 r/m in,恒定载荷为8 N的实验条件下,其稳定摩擦因数为0.16,磨损率为1.61×10-6mm3/(N.m)。纯POM磨损方式以黏着磨损为主,POM/5%LDPE/SF复合材料以疲劳磨损为主,伴随有转移膜的剥落。  相似文献   

12.
为提升风电偏航树脂基制动片高温下的摩擦磨损性能,采用稀土和纳米材料对树脂基制动片进行改性。采用热压成型工艺制备改性树脂基制动片,对试样进行力学性能测试和摩擦磨损试验。采用SEM、EDS、XRD对试验后试样摩擦表面进行观察和分析,探究稀土和纳米材料对树脂基复合材料的作用机制。结果表明:添加稀土和纳米材料后试样的相关力学性能和摩擦学性能均有提高,其中质量分数1%的氧化铈和氧化钇、4%的纳米二氧化硅可使复合材料350℃高温下的摩擦因数提高9.09%,磨损率下降64.28%。稀土和纳米二氧化硅通过优异的界面效应,提高了高温下试样的抗热衰退性,降低了高温下试样的磨损量,使试样磨损形式从磨粒磨损为主转变为黏着磨损为主。  相似文献   

13.
为提高水润滑轴承的承载能力,利用水凝胶在水润滑条件下的水合作用来改善热塑性聚氨酯(TPU)轴承材料的摩擦学性能。利用聚乙烯醇、海藻酸钠、壳聚糖等材料制备水凝胶颗粒,并通过熔融共混法制备水凝胶/TPU复合材料;在0.3和0.5 MPa的载荷下测试复合材料的摩擦磨损性能,利用激光干涉表面轮廓仪和扫描电子显微镜观察其磨损表面形貌,分析其磨损机制。结果表明:水凝胶微粒可以通过水合润滑改善摩擦副的润滑条件,从而降低摩擦因数和磨损量,提高复合材料的摩擦性能;水凝胶质量分数4%时复合材料具有最佳的摩擦磨损性能,其在0.3和0.5 MPa工况下相对于TPU试样的平均摩擦因数减少率分别为52.31%和43.94%。研究结果为开发高性能水润滑轴承材料提供了一种方法。  相似文献   

14.
纳米锌填充超高分子量聚乙烯复合材料微动摩擦磨损性能   总被引:1,自引:0,他引:1  
利用热压烧结法制备不同含量纳米锌填充超高分子量聚乙烯(UHMWPE)复合材料,采用微动摩擦磨损试验机研究干摩擦条件下纳米锌含量对复合材料微动摩擦磨损性能的影响。利用场发射扫描电子显微对复合材料断面进行分析,采用扫描电子显微镜对材料磨损表面及钢球进行表征,探讨复合材料的磨损机制。研究结果表明:随着纳米Zn含量的增加,复合材料的摩擦因数和磨损率均表现为先降低后升高;当纳米Zn质量分数为1%时复合材料具有最低的摩擦因数和磨损率,且对偶钢球表面形成连续的转移膜;复合材料的磨损机制主要为黏着磨损和磨粒磨损。添加锌纳米颗粒,可以提高UHMWPE复合材料的微动摩擦磨损性能,当纳米锌质量分数为1%时,复合材料具有最低的摩擦因数和最优的耐磨损性能。  相似文献   

15.
采用热压烧结法制备一种新型Fe3A l基复合材料,讨论基体成分对其摩擦学性能的影响。研究结果表明:本实验中,Fe3A l粉体的最佳球磨时间为60 h;随着A l含量提高,Fe3A l基复合材料的摩擦因数略有降低但耐磨性明显提高,合金元素Cr的加入有效地改善了材料的摩擦学性能,以Fe-28A l作为摩擦材料的基体即可很好地满足性能要求;Cu作为基体中的软相,摩擦因数随游离Cu含量的增加呈上升趋势但摩擦稳定性变差,且耐磨性降低,Cu含量的最佳范围为12%~18%(质量分数),随着石墨含量的增加,材料的摩擦因数和磨损率都下降,但石墨含量过高会导致材料性能恶化,石墨的最佳含量为8%~12%(质量分数)。  相似文献   

16.
Fe3O4磁流体润滑摩擦因数试验研究   总被引:2,自引:0,他引:2  
利用MMW-1万能摩擦磨损试验机,测定不同磁性颗粒含量、载荷和旋转速度下Fe3O4磁流体润滑剂的四球摩擦副的摩擦力矩,并计算出相应的摩擦因数。试验结果表明,磁流体润滑膜具有良好的减摩能力,其中质量分数为10%的磁流体摩擦学性能最优,其摩擦因数相对于基液最大可降低35%左右。摩擦学性能得以提高主要是由于磁性颗粒的增粘作用,使油膜增厚,微滚动效应则导致摩擦力减小。  相似文献   

17.
通过熔融共混法制备聚四氟乙烯(PTFE)/聚对苯二甲酸丁二醇酯(PBT)、硅灰石/PBT复合材料及芳纶质量分数为5%和10%的芳纶/PBT复合材料,对比分析4种改性PBT复合材料在水润滑条件下的摩擦磨损性能。结果表明:在中低速下,4种复合材料摩擦因数比较稳定,高速条件下,PTFE/PBT、硅灰石/PBT复合材料的摩擦因数逐渐上升,芳纶/PBT复合材料摩擦因数逐渐减小,其中芳纶质量分数为5%的改性PBT复合材料在试验时间内平均摩擦因数最小,摩擦因数稳定性最高;芳纶/PBT复合材料在试验时间内的磨损量明显小于PTFE/PBT及硅灰石/PBT复合材料,其中芳纶质量分数为5%的芳纶/PBT复合材料的磨损量最小;芳纶/PBT复合材料磨损机制主要为轻微的疲劳磨损,PTFE/PBT复合材料主要为黏着磨损,并伴随轻微的疲劳磨损,硅灰石/PBT复合材料以磨粒磨损为主。  相似文献   

18.
为克服树脂基制动材料易产生热衰退而失效的问题,在热压成型的树脂基制动摩擦材料加入氧化镧进行改性。通过正交试验方差分析获得摩擦学性能较优的配方,通过X-DM摩擦试验、磨损表面形貌分析等手段探讨氧化镧对材料在不同温度下的摩擦学性能的影响,并探讨其摩擦磨损机制。结果表明:摩擦材料配方组分及质量分数分别为氧化镧21. 6%、酚醛树脂12. 9%、硅酸铝纤维12. 9%、竹纤维2. 6%,其他填料50%时可获得较优的摩擦磨损性能;加入适量的氧化镧不仅能够稳定低温、高温摩擦因数,还能降低磨损率,减少热衰退的产生;在树脂基制动摩擦材料中加入适量的氧化镧后,其磨损形式由磨粒磨损为主转变为黏着磨损为主,且磨损表面出现大面积连续的摩擦膜。  相似文献   

19.
为了改善水润滑轴承材料热塑性聚氨酯(TPU)的减振降噪性能,以TPU为基体、聚四氟乙烯(PTFE)为添加剂,通过物理共混的方式制备PTFE/TPU改性复合材料。在RTEC摩擦磨损实验机上模拟泥沙工况,对复合材料进行不同速度和载荷下的摩擦学试验,通过分析复合材料的力学性能、摩擦因数、表面形貌以及振动噪声行为,探讨其摩擦磨损规律与减振降噪性能。结果表明:复合材料的拉伸强度和邵氏硬度均随着PTFE含量的增加而先增加后降低,质量分数8%PTFE改性TPU复合材料表现出最好的力学性能;随着速度与载荷的增大,复合材料的摩擦因数逐渐增大,材料表面损伤、变形、剥落等严重损伤逐渐增多;与纯TPU相比,改性复合材料的摩擦磨损剧烈程度更低,摩擦因数的变化幅度较小且摩擦因数曲线相对光滑,材料微观表面的损伤更少;随着速度与载荷的增大,复合材料的振动响应与辐射噪声现象增大,振动与噪声信号的平均强度增大,频域上的频率分量增多,幅值分量增大,主频向高频转移;PTFE能够改善TPU的摩擦学性能,降低摩擦因数,同时赋予复合材料一定的减振降噪性能,并且效果在高速、高载荷下更为明显。  相似文献   

20.
以超高分子量聚乙烯为基体,用纳米二硫化钼和氟橡胶对其进行改性,制备一种新型复合UHMWPE水润滑轴承材料。在轴系试验台SSB-100上,研究复合UHMWPE材料在不同转速下的摩擦磨损性能,并分析其磨损形貌。结果表明,采用纳米二硫化钼改性UHMWPE时并不能有效改善其摩擦性能;采用氟橡胶改性时UHMWPE复合材料的摩擦因数呈现整体下降、局部波动的趋势,并在氟橡胶质量分数为20%时摩擦因数最低;二硫化钼和氟橡胶协同改性UHMWPE材料的摩擦因数随着二硫化钼和氟橡胶含量的升高而逐渐下降,其中纳米二硫化钼质量分数为8%、氟橡胶质量分数为16%的材料摩擦性能和磨损性能都达到最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号