共查询到20条相似文献,搜索用时 0 毫秒
1.
车轮多边形不仅会严重影响高速列车的运行性能,同时会随着车轮的磨耗发生不断演变,因此其演变行为值得关注。对高速列车车轮多边形磨耗的演变过程进行数值模拟,并分析相位差对多边形磨耗的影响。结果表明,车轮初始3阶多边形会演变成多阶混合多边形,其中3的整数倍阶多边形占主要地位;车轮多边形发展过程中,存在一个磨耗急剧增大的"转折里程",应在"转折里程"之前对车轮多边形进行处理;车轮多边形使轮轨垂向力和轮对构架垂向振动加速度增大,同时导致跳轨现象,影响车辆运行安全;多边形相位差会导致车轮的磨耗迅速增加,磨耗率在轮相位差为1/2周期时达到最大。研究成果为车轮多边形的控制手段及现场镟修策略提供了理论依据。 相似文献
2.
列车车轮多边形磨耗问题广泛存在于我国高速列车上,会显著增大轮轨之间的相互作用力,严重影响列车运行安全性和舒适性,其产生和发展机理值得探究。车轮多边形磨耗与钢轨波浪形磨损(简称:波磨)从磨耗特征来看较为相似,只是发生磨耗的载体不同,钢轨波磨是否对车轮多边形磨耗存在根本的影响值得深入研究。以我国某线路上运行的高速动车组列车为研究对象,通过建立车轮多边形磨耗仿真预测模型,结合现场试验数据,调查钢轨波磨对车轮多边形磨耗产生和发展的影响。研究表明,钢轨波磨虽然可以导致轮轨力和蠕滑率等磨耗关键参数沿车轮圆周发生周期性波动,但是在车辆实际运营条件下,钢轨波磨导致车轮多边形磨耗产生这一观点的成立条件极为"苛刻",对车轮和钢轨波磨区段起始点的接触位置、钢轨波磨的波长以及车轮周长都有严格的要求。在实际中该条件难以满足。因此,钢轨波磨的存在并不是车轮多边形产生的根本原因。结果可为高速列车车轮多边形形成机理的相关研究提供参考和指导。 相似文献
4.
对于动车组车轮磨耗引起的动力学性能降低问题,车轮型面优化是一个很好的解决方案。采用旋转压缩微调法(Rotary-scaling fine-tuning method,RSFT)进行型面生成;建立某型动车组车辆动力学模型,采用该模型计算相应的优化目标和约束条件;利用径向基神经网络-粒子群(Radial-based neural network-particle swarm optimization,RBF-PSO)算法优化出最优廓形。通过对比优化前后车轮型面的动力学性能和磨耗性能,可以发现:优化后车轮型面临界速度为424.6 km/h,增大10.2%;横向平稳性和垂向平稳性指标整体减小,同时提高了曲线通过时的安全性指标,脱轨系数、倾覆系数和轮轴横向力都进一步减小。优化后车轮型面接触点分布相对更加均匀,等效锥度减小。同时优化后车轮型面有效减小车轮磨耗深度,并减小了轮缘根部磨耗,车轮最大磨耗深度减小9.8%。 相似文献
5.
针对齿轨列车车轮踏面磨耗情况下难以探究齿轮齿条接触状态规律的问题,提出了一种基于Hertz接触理论的考虑车轮踏面磨耗情况的齿轮齿条齿面接触应力计算模型。首先,分析了磨耗情况下齿轮齿条的接触关系,获得了接触应力计算关键参数随车轮磨耗的变化规律,并结合Hertz接触理论构建了考虑车轮磨耗的齿轮齿条接触应力计算模型;然后,选取某工程齿轮齿条参数进行计算,获得了磨耗周期内的齿面接触应力分布,并通过27组有限元仿真试验获得了不同磨耗量、不同接触位置的齿轮齿条接触应力数据,与上述计算模型结果进行了对比;最后,运用上述计算模型进一步分析了车轮磨耗影响接触应力规律的内在机制和关键因素。结果表明,模型结果与仿真计算结果的最大相对误差为7.71%,验证了计算模型的准确性;车轮踏面磨耗量越大,齿轮齿条啮入点附近的接触应力越大,其影响机制是车轮磨耗导致啮入点附近驱动齿轮曲率半径急剧减小;增大初始中心距和齿条齿顶圆角影响系数,可降低车轮踏面磨耗对接触应力的影响,并可通过减小高度调整周期来优化接触状态情况。 相似文献
6.
7.
简要地介绍我国高速列车车轮技术研究现状和应用情况,提出它们服役过程中出现的影响列车运行品质、安全运营和运输成本的几个主要问题,主要关心的是高速车轮非圆化或车轮多边形磨耗问题,简单介绍国内外对车轮多边形磨耗的研究现状以及对策。总结分析我国高速车轮多边形磨耗情况和特征,其显著特征是车轮多边形磨损凸显了2~3主波长的不均匀磨损,主要为偏心磨损(1阶)以及14~23边(14~23阶)磨损。确立车轮多边形磨耗诱发和快速发展的基本条件,发现在轮径变化的几个特殊阶段,如果满足这一基本条件的话,车轮多边形磨耗易快速发展。给出并简单讨论多边形磨损对车辆行为、轮轨附件冲击载荷、振动噪声和疲劳的影响。仔细讨论影响车轮多边形形成和快速发展的基本因素。论述若干种抑制多边形发展的对策,部分对策已经被现场运营经验所证明是十分有效的。提出多边形车轮维修策略和目前关键亟待开展的研究问题。 相似文献
8.
列车紧急制动过程中踏面温度急剧升高导致车轮踏面的摩擦磨损机理与稳态运行时有显著差异。为了准确预测列车紧急制动过程中踏面磨耗,同时考虑踏面制动过程中车轮踏面与钢轨及闸瓦接触,基于有限元软件ABAQUS建立了踏面制动过程热机械耦合有限元模型,综合考虑制动温升对车轮踏面力学性能、硬度及摩擦因数的影响,仿真得到了紧急制动过程中车轮踏面上温度分布、硬度分布以及接触应力分布,并利用轮轨动力学软件UM得到了紧急制动过程中轮轨接触斑形状以及轮轨蠕滑区相对滑移分布,在此基础上结合Archard磨耗模型对单次紧急制动结束后的踏面磨损深度进行了定量预测。结果表明:对于制动初速度为130 km/h、160 km/h两种工况,踏面最高温度分别达到了397.0 ℃和485.9 ℃,踏面最大累积磨损深度分别为5.90 μm和7.43 μm,与踏面制动实验对比发现,预测结果与实验结果磨损位置及形貌分布趋势一致。 相似文献
9.
10.
基于考虑温湿度影响的摩擦因数预测模型及mixed Lagrangian/Eulerian方法建立高速轮轨稳态滚动接触有限元模型,在不考虑横移及冲角的条件下,对比分析XP55、S1002以及LMa车轮型面分别与CHN60轨相接触时的接触特性及磨耗特性,优选出一种最适合湿热地区高速列车车轮型面。结果表明:XP55车轮型面牵引性能、轮对恢复对中性能最好,但是耐磨性及临界速度均最差;S1002车轮型面与CHN60轨匹配性能最差,同时牵引性能、轮对恢复对中性能最差,易发生失稳,但耐磨性及临界速度均最好;LMa车轮型面接触特性及磨耗特性均介于两者之间,相对更加适合湿热地区高速列车。 相似文献
11.
列车车轮踏面缺陷图像区域提取 总被引:1,自引:0,他引:1
针对踏面缺陷图像的特点,对其缺陷图像区域提取技术进行了研究,设计了一种基于平稳小波自适应阈值踏面区域分割算法,提出了一种基于分块思想粗定位和精定位组合定位的剥离缺陷区域提取算法和基于踏面边缘线扫描搜索的擦伤区域提取的算法。通过两个踏面缺陷的实例,验证了算法的有效性,对现场采集样本进行试验,结果表明:系统对剥离和擦伤的两种缺陷的漏识率分别为8.3%和5.3%,误识率为5.1%,为后续特征提取和识别奠定了基础。 相似文献
12.
13.
14.
为研究大秦线路上列车车轮型面演变对固定辙叉动力学性能的影响,建立重载列车-辙叉动力学模型,分析重载列车通过固定辙叉的动力学性能和磨耗规律。结果表明,车轮通过理论尖端后,滚动圆半径不断变化使得轮叉接触点线速度发生改变,轮叉间滚动与滑动摩擦并存,对翼轨磨损较大;不同车轮对心轨冲击位置相对集中,心轨该区段伤损严重;车轮演变使轮叉接触状态发生变化,磨耗初期车轮的列车动力学性能优于标准车轮,列车平顺性更好,磨耗初期机车与货车轮叉垂向力较标准车轮分别降低了39%和56%,该磨耗阶段车轮与辙叉匹配时,辙叉的磨损最轻微。随着车轮型面演变,车轮磨耗加深,列车动力学性能逐渐恶化,磨耗后期车轮对辙叉磨耗掉块伤损的影响最剧烈。 相似文献
15.
高速列车轮对磨耗统计规律及预测模型 总被引:1,自引:0,他引:1
为研究我国高速列车轮对踏面磨耗规律,对某线路服役高速动车组进行跟踪测试,记录其镟轮周期内的踏面磨耗量,并基于对磨耗统计特征的两次拟合提出轮对型面磨耗预测函数模型。对某高速线路实测型面磨耗量进行拟合,分别得到各走行里程下磨耗量关于型面位置的拟合函数;并进一步对各走行里程下的拟合函数系数进行二次拟合,得到磨耗量关于型面位置及走行里程的二元预测函数。在模型的预测精度与适用性验证时,对比相同走行里程下预测型面和实测型面在轮轨接触几何关系与车辆各关键部件加速度响应两方面结果。对比结果显示,提出的磨耗预测模型在轮轨接触点、等效锥度、轮轨作用力及车辆安全性等各方面均与线路实测结果具有很好的一致性。 相似文献
16.
基于多体动力学SIMPACK软件建立HXD2C大功率机车模型,分析实测轮轨廓形匹配下车轮通过R400曲线段和R600曲线段时车轮所受蠕滑力大小及方向,并将结果代入安定图及损伤函数进行车轮踏面损伤预测。研究结果表明:机车通过R400曲线段时,车轮编号为3、5、9、11的内轨侧车轮纵向蠕滑力方向与车轮滚动方向相反,且车轮材料均处于棘轮效应区,易产生与蠕滑力合力方向垂直的斜裂纹。其中编号为3和9的车轮疲劳损伤值大于磨耗值,随着循环滚动的累积疲劳损伤会进一步加剧。同理,机车通过R600曲线段时,车轮编号为3、5、10、11、12的车轮踏面易产生与蠕滑力方向垂直的斜裂纹,其中以车轮5疲劳损伤最为严重。相较于R400曲线段,机车通过R600曲线段时外轨侧车轮10和12接触斑面积减小、磨耗减小、疲劳损伤值大于磨耗值是踏面存在轻微疲劳损伤的主要原因。 相似文献
17.
车轮踏面磨耗引起轮轨匹配不良,极易造成车辆异常振动。设计车轮镟修型面,改善轮对及车辆振动特性。以圆弧长度、半径、及圆弧坐标为变量,采用GA-BP算法,以车辆运行平稳性与等效锥度为优化目标构建踏面优化模型,进行多目标寻优求解,获得磨耗车轮的镟修型面。结合车辆系统动力学进行分析,结果表明:镟修型面LMB-opti的轮轨静态匹配良好,车轮踏面接触点分布均匀,构架横向振动加速度在(-0.45g,0.45g)之间,车辆运行平稳性指数为2.2,降低了23.3%;列车运行5万km、10万km后,镟修型面LMB-opti比标准型面LMB磨耗深度分别降低了4.7%和5.1%,有利于减缓车轮凹磨及改善车辆的异常振动。 相似文献
18.
建立了一个标准车轮的模型,通过ANSYS有限元分析软件对其施加位移激励,进行频谱分析,得到车轮踏面各部位的位移响应谱,以此分析车轮踏面不同部位对于激励的响应.根据位移功率谱分析原理,应用MAT-LAB软件生成位移激励功率谱曲线,结合ANSYS软件通过分析可以看出车轮踏面的振动以轴向振动为主,并得到了位移谱峰值集中存在的两个主要频域范围,为列车车轮的安全平稳运行提供了依据. 相似文献
19.
川藏铁路的建设面临着极端的地质灾害与极差的工程环境两大挑战,列车运行线路的空间复杂性势必会对轮轨磨耗性能造成影响。为探究列车在复杂的空间线型环境下的磨耗规律,根据川藏铁路的线路设计参数设置长大坡道与平面曲线的叠加线路,建立高速动车组动力学模型与车轮磨耗预测模型,仿真分析牵引制动条件下动车组在长大坡道上运行时的车轮磨耗特征。结果表明:LMA型车轮踏面的CR400-AF高速动车在坡道-曲线叠加路况上运行时,前位转向架的轮轨接触状态为两点接触,后位转向架的轮轨接触状态为单点接触;平面曲线与坡道的相对位置对动车组车轮磨耗存在一定的影响;随着曲线半径的增加,车轮的磨耗深度逐渐降低,且降低的趋势越来越小。动车组在坡道-曲线路况上的长期运行过程中存在临界里程和临界速度,为防止车轮的剧烈磨耗,建议在动车组长期运营过程中应尽量避免以临界速度或更低的速度运行,在运营里程超过临界里程时应及时对车轮进行镟修。 相似文献
20.
基于实验室获得的CL60车轮材料Tγ/A-磨损率曲线建立车轮踏面磨损模型,通过Simpack软件建立C80货车模型进行车辆轨道动力学仿真,利用Tγ/A-磨损率车轮踏面磨损模型对车轮踏面的磨耗规律进行仿真分析。结果表明:25 t轴重、600 m曲线半径工况下,同一转向架的前轮对较后轮对磨耗严重,同时与内轨处车轮相比,外轨处车轮磨耗较为严重;由于Tγ/A-磨损率曲线中磨损率输入取值的连续性,相同工况使用该模型获得的仿真结果比采用Archard磨损系数仿真得到的结果要小,其结果具有更好的精度。基于Tγ/A-磨损率的车轮踏面磨损模型为未来复杂服役环境下的车轮踏面磨耗预测提供了重要的方法。 相似文献