首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fast transmission control protocol (TCP) was previously proposed for high capacity network environments with long delay, and "FAST TCP with Snoop" performs better than conventional TCP enhancements in mobile wireless network environments. However, FAST TCP has limitations when used over a dynamic mobile wireless link with a high frame error ratio (FER) and frequent delay changes due to the variable rate. We propose an enhanced TCP acceleration algorithm at the TCP sender side which efficiently adapts to the maximum transmission rate of a mobile wireless link using the round trip time (RTT) and virtual receiver window (RWND) information. The proposed algorithm provides superior performance over mobile wireless network environments.  相似文献   

2.
To improve the spectral efficiency while meeting the radio link level quality of service requirements such as the bit-error-rate (BER) requirements for the different wireless services, transmission rate and power corresponding to the different mobile users can be dynamically varied in a cellular wideband code-division multiple-access (WCDMA) network depending on the variations in channel interference and fading conditions. This paper models and analyzes the performance of transmission control protocol (TCP) under joint rate and power adaptation with constrained BER requirements for downlink data transmission in a cellular variable spreading factor (VSF) WCDMA network. The aim of this multilayer modeling of the WCDMA radio interface is to better understand the interlayer protocol interactions and identify suitable transport and radio link layer mechanisms to improve TCP performance in a wide-area cellular WCDMA network.  相似文献   

3.
Mobile telecommunication new services are based on data networks specially Internet. These services include http, telnet, ftp, Simple Mail Transfer Protocol, etc. Besides, we recognize a mobile network as a multiuser network. Transmission Control Protocol (TCP)/Internet Protocol which is sensitive to link congestion in wireline data links is also used in wireless networks. In order to improve the system performance, the TCP layer uses flow control and congestion control. Besides, radio link control (RLC) and medium access control sublayers have been introduced to compensate the deficiency of TCP layer in wireless environment. RLC has an important role in quality of service enhancement of the Universal Mobile Telecommunications System (UMTS). In this paper, we review the protocol stack of UMTS Terrestrial Radio Access Network which is based on Third-Generation Partnership Project. Then, we evaluate its layer 2 error control mechanisms and verify TCP over automatic repeat request error control mechanism and finally quality of service improvement results from it in fading channels.  相似文献   

4.
Improving TCP performance over wireless networks at the link layer   总被引:2,自引:0,他引:2  
We present the transport unaware link improvement protocol (TULIP), which dramatically improves the performance of TCP over lossy wireless links, without competing with or modifying the transport- or network-layer protocols. TULIP is tailored for the half-duplex radio links available with today's commercial radios and provides a MAC acceleration feature applicable to collision-avoidance MAC protocols (e.g., IEEE 802.11) to improve throughput. TULIP's timers rely on a maximum propagation delay over the link, rather than performing a round-trip time estimate of the channel delay. The protocol does not require a base station and keeps no TCP state. TULIP is exceptionally robust when bit error rates are high; it maintains high goodput, i.e., only those packets which are in fact dropped on the wireless link are retransmitted and then only when necessary. The performance of TULIP is compared against the performance of the Snoop protocol (a TCP-aware approach) and TCP without link-level retransmission support. The results of simulation experiments using the actual code of the Snoop protocol show that TULIP achieves higher throughput, lower packet delay, and smaller delay variance. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Improving TCP performance over wireless networks at the link layer   总被引:1,自引:0,他引:1  
We present the transport unaware link improvement protocol (TULIP), which dramatically improves the performance of TCP over lossy wireless links, without competing with or modifying the transport- or network-layer protocols. TULIP is tailored for the half-duplex radio links available with today's commercial radios and provides a MAC acceleration feature applicable to collision-avoidance MAC protocols (e.g., IEEE 802.11) to improve throughput. TULIP's timers rely on a maximum propagation delay over the link, rather than performing a round-trip time estimate of the channel delay. The protocol does not require a base station and keeps no TCP state. TULIP is exceptionally robust when bit error rates are high; it maintains high goodput, i.e., only those packets which are in fact dropped on the wireless link are retransmitted and then only when necessary. The performance of TULIP is compared against the performance of the Snoop protocol (a TCP-aware approach) and TCP without link-level retransmission support. The results of simulation experiments using the actual code of the Snoop protocol show that TULIP achieves higher throughput, lower packet delay, and smaller delay variance. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
A performance evaluation is presented for a split-connection protocol for wireless Internet access which is denoted Split-Connection Mobile Tranport Protocol (SCMTP). It uses the general approach of the previously introduced Mobile End Transport Protocol (METP) but with differences that include a wireless-link channel-access protocol better matched with current cellular networks and more general ARQ methods for error control in the wireless link. In common with METP, SCMTP uses a standard TCP protocol on the wire-line connection and isolates the data flow in the wire-line network from the effect of wireless packet errors.Performance is considered for the important case of a single SCMTP split connection between a fixed host and a mobile host with heavy downlink traffic from the fixed host to the mobile host. It is shown for these conditions that if the wire-line packet-error rate is small, a steady state is reached in which the connection's data flow in the wire-line network remains under the control of the receiver-advertised window of the TCP entity at the base station. Performance is evaluated for the steady-state operation of the SCMTP protocol, and relationships are established between the key properties of the split connection and the end-to-end performance of the connection.It is shown that for heavy downlink traffic, the delay in the wire-line part of the connection does not affect steady-state throughput if the receiver buffer is sized appropriately. It is also shown that use of the go-back-N ARQ protocol on the wireless link yields better performance than the stop-and-wait ARQ protocol, although the performance with go-back-N ARQ is more sensitive to the characteristics of the wireless channel. It is shown that under a broad range of conditions, SCMTP with go-back-N ARQ provides nearly optimal utilization of the capacity of the wireless link.  相似文献   

7.
World over wide-area wireless Global System for Mobile Communication (GSM) networks have been upgraded to support the general packet radio service (GPRS). GPRS brings "always-on" wireless data connectivity at bandwidths comparable to that of conventional fixed-line telephone modems. Unfortunately many users have found the reality to be rather different, experiencing very disappointing performance when, for example, browsing the Web over GPRS. In This work, we show what causes the web and its underlying transport protocol TCP to underperform in a GPRS wide-area wireless environment. We examine why certain GPRS network characteristics interact badly with TCP to yield problems such as: link underutilization for short-lived flows, excess queueing for long-lived flows, ACK compression, poor loss recovery, and gross unfairness between competing flows. We also show that many Web browsers tend to be overly aggressive, and by opening too many simultaneous TCP connections can aggravate matters. We present the design and implementation of a web optimizing proxy system called GPRSWeb that mitigates many of the GPRS link-related performance problems with a simple software update to a mobile device. The update is a link-aware middleware (a local "client proxy") that sits in the mobile device, and communicates with a "server proxy" located at the other end of the wireless link, close to the wired-wireless border. The dual-proxy architecture collectively implements a number of key enhancements-an aggressive caching scheme that employs content-based hash keying to improve hit rates for dynamic content, a preemptive push of Web page support resources to mobile clients, resource adaptation to suit client capabilities, delta encoded data transfer of modified pages, DNS lookup migration, and a UDP-based reliable transport protocol that is specifically optimized for use over GPRS. We show that these enhancements results in significant improvement in web performance over GPRS links.  相似文献   

8.
TCP is a reliable transport protocol tuned to perform well in traditional networks made up of links with low bit-error rates. Networks with higher bit-error rates, such as those with wireless links and mobile hosts, violate many of the assumptions made by the transmission control protocol (TCP), causing degraded end-to-end performance. We propose a two-layer hierarchical cache architecture for enhancing TCP performance over heterogeneous networks with both wired and wireless links. A new network-layer protocol, called new snoop (NS), is designed. The main idea is to cache the unacknowledged packets at both the mobile switch center (MSC) and base station (BS), to form a two-layer cache hierarchy. If a packet is lost due to transmission errors in the wireless link, the BS takes the responsibility to recover the loss. When a handoff occurs, the packets cached at the MSC can help to minimize the latency of retransmissions due to temporal disconnection. NS can preserve the end-to-end TCP semantics and is compatible with existing TCP applications. Its implementation only requires code modification at the BS and MSC. Simulation results show that NS is significantly more robust in dealing with unreliable wireless links and handoffs as compared with the original snoop scheme, as well as some other existing TCP enhancements.  相似文献   

9.
Providing support for TCP with good quality link connection is a key issue for future wireless networks in which Internet access is going to be one of the most important data services. A number of schemes have been proposed in literature to improve the TCP performance over wireless links. In this paper, we study the performance of a particular combination of link layer protocol (e.g., radio link protocol or RLP) and MAC retransmissions to support the TCP connections over third generation (3G) wireless CDMA networks. We specifically investigate two metrics - the packet error rate and the delay provided by RLP and MAC retransmissions - both of which are important for TCP performance. For independent and identically distributed (i.i.d) error channels, we propose an analytical model for RLP performance with MAC retransmission. The segmentation of TCP/IP packets into smaller RLP frames, as well as the RLP buffering process, is modeled using a Markov chain. For correlated fading channels, we introduce an analytical metric called RLP retransmission efficiency. We show that: 1) the RLP frame size has significant impact on the overall 3G system performance, 2) MAC layer retransmissions significantly improve the TCP performance, and 3) the RLP retransmission scheme performs better in highly correlated channels, while other scheme performs better in low correlated channels. Simulation results also confirm these conclusions.  相似文献   

10.
TCP Window Control for Variable Bandwidth in Wireless Cellular Networks   总被引:1,自引:0,他引:1  
Most of TCP schemes in wireless networks assume that the bandwidth of the bottleneck link remains constant over time. However, in wireless cellular networks, to effectively manage the limited resources, the bandwidth is controlled based on radio condition over time. Such varying bandwidth can cause the networks congestion or underutilization. In this letter, we propose a new window control algorithm to improve TCP performance in wireless cellular networks with variable bandwidth. Simulation results illustrate that our proposal improves the performance of TCP in terms of fairness and link utilization  相似文献   

11.
在无线网络中,造成丢包的主要原因是无线链路的高误码率(BER)及主机在区域间移动。如果TCP的丢包处理简单采用启动拥塞控制机制,势必导致网络传输性能恶化。本文以全IP蜂窝通信系统为例,概述TCP/IP协议组用于无线链路的性能问题,提出解决这些问题的方案,分析该方案的优点和局限性。  相似文献   

12.
In this paper, we present the throughput performance of the transport control protocol/radio link protocol (TCP/RLP) stack on correlated fading direct-sequence code-division multiple-access (DS-CDMA) wireless links. It is shown that because of significant burstiness in RLP frame errors in highly correlated Rayleigh fading, longer persistence at the RLP layer to recover lost RLP frames (more than the IS-99 specified three retransmission attempts at the RCP layer) is beneficial at low-link fading margins  相似文献   

13.
This paper considers the problem of supporting TCP, the Internet data transport protocol, over a lossy wireless link whose quality varies over time. In order to prevent throughput degradation, it is necessary to “hide” the losses and the time variations of the wireless link from TCP. A number of solutions to this problem have been proposed in previous studies, but their performance was studied on a purely experimental basis. This paper presents an approximate analysis, validated by computer simulations, for TCP performance over wireless links. The analysis provides the basis for a systematic approach to supporting TCP over wireless links. The specific case of a Rayleigh-faded wireless link and automatic repeat request-based link-layer recovery is considered for the purpose of illustration. The numerical results presented for this case show that a simple solution, that of using an appropriately designed link-layer error-recovery scheme, prevents excessive deterioration of TCP throughput on wireless links  相似文献   

14.
All over the world Global System for Mobile Communication (GSM) cellular mobile networks have been upgraded to support the "always-on" general packet radio service (GPRS). Despite the apparent availability of levels of bandwidth not dissimilar to that provided by conventional fixed-wire telephone modems, the user experience using GPRS is still considerably poor. In this paper, we examine the performance of protocols such as transmission control protocol (TCP) over GPRS, and show how certain network characteristics interact badly with TCP to yield problems such as: link underutilization for short-lived flows, excess queueing for long-lived flows, acknowledgment bunching, poor loss recovery, and gross unfairness between competing flows. We present the design and implementation of a transparent TCP proxy that mitigates many of these problems without requiring any changes to the TCP implementations in either mobile or fixed-wire end systems. The proxy is interposed in the cellular provider's network, and splits TCP connections transparently into two halves-the wired and wireless sides. Connections destined for the same mobile host are treated as an aggregate due to their statistical dependence. We demonstrate packet scheduling and flow control algorithms that use information shared between the connections to maximize performance of the wireless link, while interworking with unmodified TCP peers. We also demonstrate how fairness between flows and response to loss is improved, and that queueing and, hence, network latency is reduced. We discuss how TCP enhancing proxies could be transparently deployed, and conclude that installing such a proxy into GPRS network would be of significant benefit to users.  相似文献   

15.
This paper provides performance results through analysis and simulation for key error control problems encountered in using wireless links to transport asynchronous transfer mode (ATM) cells. Problems considered include the forward-error correction (FEC) and interleaving at the physical layer, the impact of wireless links on the ATM cell header-error control (HEC) sand cell delineation (CD) functions, the application of data link automatic repeat-request (ARQ) for traffic requiring reliable transport, and the impact of the choice of end-to-end ARQ protocol for reliable service. We conclude that it is very important to make the physical layer as SONET-like as possible through the use of powerful FEC, interleaving, and ARQ. These additional error control measures are especially necessary for disturbed channels because of the degrading effects of the channel on higher-layer functions. A recommended error control architecture is given with tradeoffs  相似文献   

16.
互联网传输协议的性能优化   总被引:3,自引:0,他引:3  
文章分析了移动无线网络中传输控制协议的改进算法和传输控制协议的友好控制机制,并对新型传输层协议——流控制传输协议及其移动性支持功能进行了研究,进而分析了流控制传输协议在移动互联网中的性能优化方案。  相似文献   

17.
Wireless technologies provide mobile access and enable rapid andcost‐effective network deployment. But a wireless link is generally accompanied by high interference, transmission errors and a varying latency. The erratic packet losses usually lead to a curbing of the flow of segments on the TCP connection, and thus limit TCP performance. This paper presents a threshold control mechanism with cross‐layer response approach for improving TCP Vegas performance in IEEE 802.11 wireless networks. By making slight modifications to the legacy IEEE 802.11 MAC and TCP, the numerical results reveal that the proposed scheme provides a significant improvement in TCP performance under IEEE 802.11 wireless environments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Optimizing TCP and RLC interaction in the UMTS radio access network   总被引:2,自引:0,他引:2  
TCP, the dominant transport protocol for Internet applications, suffers severe performance degradation due to packet losses when a wireless link is present in the end-to-end path. For this reason, the 3G specification entity, 3GPP, has defined a reliable link layer protocol, RLC, to support packet switched services over UMTS. RLC provides error recovery in the radio access network by means of an ARQ algorithm. Early studies supported the benefit of using a reliable link protocol, while more recent studies outline new problems arising from RLC and TCP interaction and how to overcome them. This article describes the most relevant issues concerning TCP-RLC interaction and evaluates the most practical enhancement approaches, based on optimum parameter configuration at the transport and link layers. We devote special attention to RLC, whose specific configuration decisions are left to operators, and provide specific guidelines for setting its parameters. In addition, we propose two operational changes for enhancing the buffer management strategy, one of the main drawbacks of RLC.  相似文献   

19.
This paper investigates the interaction between end-to-end flow control and medium access control (MAC)-layer scheduling on wireless links. We consider a wireless network with multiple users receiving information from a common access point; each user suffers fading and a scheduler allocates the channel based on channel quality but is subject to fairness and latency considerations. We show that the fairness property of the scheduler is compromised by the transport-layer flow control of transmission control protocol (TCP) New Reno. We provide a receiver-side control algorithm, CLAMP, that remedies this situation. CLAMP works at a receiver to control a TCP sender by setting the TCP receiver's advertised window limit, and this allows the scheduler to allocate bandwidth fairly between the users.  相似文献   

20.
IMT‐2000 has attracted much attention as the Next Generation Mobile Communication System. IMT‐2000 can provide high‐bit‐rate data communication service, so that a great number of packets conveyed by TCP (transmission control protocol) can be transmitted over a wireless link. W‐CDMA, standardized in 3GPP (which standardizes IMT‐2000), allows dynamically allocating transmission rates to flow over a wireless link in response to a changing FER for each flow, which is thought to be essential for a next generation mobile communication system. Therefore, in this paper, we study the characteristics of the dynamic allocation scheme when TCP flows share a wireless link, and, in particular, we focus on the throughput performance of these TCP flows. First, we use simulations to examine the effectiveness of the dynamically allocating down‐link transmission rate for TCP flows in response to changing the frame error rate (FER). Through the simulation results, we will show how it can improve the total throughput performance of TCP flows. Furthermore, we can obtain an effective way to allocate transmission rates to flows with different FERs in order to achieve high total throughput. Finally, we will deal with a case of multiple flows from a fixed host to a mobile host. In actual networks, this often happens. In this case, we will show that the total throughput of TCP flows degrades less than in the single‐flow case, even when the FER is high. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号