首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
多失效模式典型结构系统可靠性稳健设计方法研究   总被引:2,自引:0,他引:2  
应用随机摄动技术与二阶矩方法,结合概率网络估算法(Probability Network Evaluation Technique),讨论了多失效模式下结构系统的可靠性和可靠性灵敏度问题,并进一步对结构系统的可靠性稳健设计进行了分析。获得了不同失效模式间的相关统计特性,应用概率网络估算法确定了系统的代表失效模式,得出了...  相似文献   

2.
机械可靠性设计的任务就是提供实际计算的数学模型和方法,在机械产品的研发阶段预测其在规定工作条件下的工作能力或寿命.结合可靠性理论研究的历史及现状对机械可靠性设计理论进行深入分析,阐明了可靠性优化设计、可靠性灵敏度设计、可靠性稳健设计、可靠性试验、传统设计方法与可靠性设计相结合等机械零件可靠性设计理论与方法的内涵,为机械零件可靠性设计提供系统的理论和方法.  相似文献   

3.
机械稳健设计的研究概况与趋势   总被引:12,自引:1,他引:11  
机械稳健设计是一种降低生产成本提高产品质量的现代设计方法,本文论述了稳健设计的基本概念,研究概况,存在问题与发展趋势。  相似文献   

4.
 应用具有任意分布参数机械零件可靠性稳健设计的理论方法,对具有任意分布参数机械典型轴系零件如半轴、前轴和后桥进行了可靠性稳健设计,给出了计算仿真分析结果,对工程实际的机械零件的可靠性稳健设计提供了理论依据。  相似文献   

5.
 应用具有任意分布参数机械零件可靠性稳健设计的理论方法,对具有任意分布参数机械典型弹簧系零件如扭杆弹簧和螺旋弹簧,进行了可靠性稳健设计,给出了计算仿真分析结果,对工程实际的机械零件的可靠性稳健设计提供了理论依据.  相似文献   

6.
 将可靠性优化设计理论、可靠性灵敏度技术和稳健设计方法相结合,讨论了具有任意分布参数的机械零件的可靠性稳健设计问题,提出了可靠性稳健设计的计算方法.把可靠性灵敏度融入可靠性优化设计模型之中,将可靠性稳健设计归结为满足可靠性要求的多目标优化问题.在基本随机参数的前四阶矩已知的情况下,通过计算机程序可以实现具有任意分布参数的机械零件的可靠性稳健设计,迅速准确地得到具有任意分布参数的机械零件的可靠性稳健设计信息。  相似文献   

7.
碰撞冲击是机电产品损坏失效的常见原因,轻则造成产品外形丧失美观,重则造成产品内在功能失效,甚至机毁人亡,因而机械产品的耐撞性受到日益广泛的关注。本文从产品跌落冲击和运载工具碰撞两个领域论述了机械系统碰撞动力学和耐撞性设计研究的发展、两领域耐撞性研究的阶段性和特点,分析了机械冲击耐撞性中的冲击参数到性能参数传递过程中的不确定性,进而探讨了机械系统产品耐撞性稳健设计优化框架。  相似文献   

8.
将可靠性优化设计理论与可靠性灵敏度分析方法相结合,讨论了机械零部件稳健优化设计的问题.系统地推导了基于鞍点逼近的可靠性灵敏度公式,并把可靠性灵敏度计算结果融入可靠性稳健优化设计模型之中,将可靠性稳健优化设计归结为满足可靠性要求的多目标优化问题.在基本随机参数概率分布已知的前提下,应用鞍点逼近技术,得到极限状态函数的分布函数与概率密度函数,并且将此结果应用到机械零部件的可靠性灵敏度分析中,进而实现了机械零部件的可靠性稳健优化设计.通过与Monte-Carlo方法计算所得的结果相比可知,应用鞍点逼近技术可以迅速、准确地得到机械零部件可靠性稳健设计信息.  相似文献   

9.
具有应力集中的机械零件可靠性稳健设计   总被引:4,自引:0,他引:4  
针对在工程中很难给出带有应力集中的机械零件的显式功能函数的问题,将有限元方法、神经网络技术和可靠性理论相结合,给出了带应力集中的机械零件的可靠性稳健设计方法,数值模拟得到随机设计变量与机械零部件结构响应之间的函数关系式,结合随机摄动法和可靠性灵敏度技术,进行结构可靠性稳健设计,从而解决了工程实际中很难给出极限状态函数显式的问题,为结构可靠性稳健优化设计提供了一种新方法。  相似文献   

10.
李艳  袁英才 《包装工程》2007,28(6):52-54
简要介绍了稳健设计方法及其在机械、机构设计中的基本模型,以卷筒纸印刷机折页机构设计为例,对稳健设计方法在包装印刷机械行业的应用进行研究和探讨。  相似文献   

11.
To decrease random parameters’ influence on the drum brake reliability, the reliability-based robust optimization design (RBROD) of the electric vehicle brake is proposed. Based on the assumption that the maximum temperature of the brake cannot exceed the allowable temperature, a performance function model of thermal–mechanical coupling reliability of drum brakes is established by the adaptive Kriging method, and the analysis of reliability sensitivity and RBROD are conducted. The accuracy of the proposed model is verified by temperature measurement experiment under emergency braking condition. The robust optimization design improves the drum brake reliability to 0.99998 and reduce the influence of the design parameters on the reliability, with the absolute values of the reliability sensitivity and the weight of the drum brake are significantly smaller. Therefore, the objectives of reliability design, robustness design, and optimization design are simultaneously achieved by the proposed methods. Besides, the relative error of the proposed method is 0.373%, the number of function evaluations is 39, and the comparison with four meta-model methods show that the proposed method holds high-accuracy and high-efficiency. This study provides a high-precision theoretical explanation for the robust optimization design of drum brake.  相似文献   

12.
The mechanical components subjected cyclic load unusually fail due to fatigue. The traditional deterministic design method still has the risk of failure while the safety factor method sometimes is overconservative and uneconomic. In this study, reliability-based design optimization is applied in structural design of components under low cycle fatigue. A constitutive model (Jiang and Sehitoglu model) was written into user-defined material subroutine of finite element software to make simulation more accurate. In addition, an adaptive least squares support vector machines (LS-SVM)-based response surface method is employed to improve the efficiency of design process. After constructing the implicit life model, a hybrid directional step method is employed to implement the performance measure approach. Finally, a simple case (thickness optimization for cantilever tube) is used to demonstrate the whole procedure of proposed design procedure.  相似文献   

13.
With the increasing complexity of engineering systems, ensuring high system reliability and system performance robustness throughout a product life cycle is of vital importance in practical engineering design. Dynamic reliability analysis, which is generally encountered due to time-variant system random inputs, becomes a primary challenge in reliability-based robust design optimization (RBRDO). This article presents a new approach to efficiently carry out dynamic reliability analysis for RBRDO. The key idea of the proposed approach is to convert time-variant probabilistic constraints to time-invariant ones by efficiently constructing a nested extreme response surface (NERS) and then carry out dynamic reliability analysis using NERS in an iterative RBRDO process. The NERS employs an efficient global optimization technique to identify the extreme time responses that correspond to the worst case scenario of system time-variant limit state functions. With these extreme time samples, a kriging-based time prediction model is built and used to estimate extreme responses for any given arbitrary design in the design space. An adaptive response prediction and model maturation mechanism is developed to guarantee the accuracy and efficiency of the proposed NERS approach. The NERS is integrated with RBRDO with time-variant probabilistic constraints to achieve optimum designs of engineered systems with desired reliability and performance robustness. Two case studies are used to demonstrate the efficacy of the proposed approach.  相似文献   

14.
 在贝叶斯统计理论和结构可靠性优化设计方法的基础上,研究了结构在小样本情况下考虑可靠度可信区间的结构可靠性优化设计问题.将结构可靠度作为随机变量,根据先验信息和样本信息,采用贝叶斯推断技术获得结构可靠度的概率分布,给出了可靠度的点估计及区间估计.建立了考虑可靠度可信区间的结构可靠性优化设计模型,提出了考虑可靠度可信区间的结构可靠性优化设计方法.所提出的方法为解决小样本情况下的结构可靠性优化设计问题提供了新的解决方案.数值算例验证了所提出的结构可靠性优化设计方法的有效性和正确性.  相似文献   

15.
The reliability index approach (RIA) is one of the effective tools for solving the reliability-based design optimization (RBDO) probabilistic model, which models the uncertainties with probability constraints. However, its wide application in engineering is limited due to low efficiency and convergence problems. The RIA-based modified reliability index approach (MRIA) appears to be very robust and accurate than RIA but yields inefficient for the most probable point (MPP) search with highly nonlinear probabilistic constraints. In this study, an enhanced modified reliability index approach (EMRIA) is developed to improve the efficiency and robustness of searching for MPP and is utilized for RBDO. In the EMRIA, an innovative active set using rigorous inequality is applied to construct the region of exploring for MPP, where the unnecessary probabilistic constraint could be eliminated adaptively during the iterative process. Moreover, the double loop strategy (DLS) is integrated into the EMRIA to strengthen the efficiency and robustness of large-scale RBDO problems. Two numerical examples demonstrated that the EMRIA is an efficient and robust method for MPP search in comparison with current first-order reliability methods. Six RBDO problems quoted also indicate that DLS-based EMRIA has good performance to solve complex RBDO problems.  相似文献   

16.
The application of design-point-based reliability-based design optimization (RBDO) methods is hindered by the challenge of multiple-design-point problems. In this article, to improve the commonality of design-point-based RBDO methods, a novel multiple-design-point (MDP) approach is developed. The MDP approach uses the trace of the design points from consequent reliability analysis iterations to identify whether there are multiple design points, then all of the design points are used to calculate shifting vectors for the sequential optimization and reliability assessment method, and the corresponding probabilistic constraints are moved to the feasible region along these multiple shifting vectors at the same time. With multiple shifted probabilistic constraints, the design feasibility associated with this probabilistic constraint will be satisfied. Two mathematical examples, a speed reducer design and a honeycomb crashworthiness design, are presented to validate the effectiveness of the MDP method. The results show that the MDP approach is effective for handling multiple-design-point problems.  相似文献   

17.
This article investigates multi-objective optimization under reliability constraints with applications in vehicle structural design. To improve computational efficiency, an improved multi-objective system reliability-based design optimization (MOSRBDO) method is developed, and used to explore the lightweight and high-performance design of a concept car body under uncertainty. A parametric model knowledge base is established, followed by the construction of a fully parametric concept car body of a multi-purpose vehicle (FPCCB-MPV) based on the knowledge base. The structural shape, gauge and topology optimization are then designed on the basis of FPCCB-MPV. The numerical implementation of MOSRBDO employs the double-loop method with design optimization in the outer loop and system reliability analysis in the inner loop. Multi-objective particle swarm optimization is used as the outer loop optimization solver. An improved multi-modal radial-based importance sampling (MRBIS) method is utilized as the system reliability solver for multi-constraint analysis in the inner loop. The accuracy and efficiency of the MRBIS method are demonstrated on three widely used test problems. In conclusion, MOSRBDO has been successfully applied for the design of a full parametric concept car body. The results show that the improved MOSRBDO method is more effective and efficient than the traditional MOSRBDO while achieving the same accuracy, and that the optimized body-in-white structure signifies a noticeable improvement from the baseline model.  相似文献   

18.
Amin Toghi Eshghi 《工程优选》2013,45(12):2011-2029
Reliability-based design optimization (RBDO) requires the evaluation of probabilistic constraints (or reliability), which can be very time consuming. Therefore, a practical solution for efficient reliability analysis is needed. The response surface method (RSM) and dimension reduction (DR) are two well-known approximation methods that construct the probabilistic limit state functions for reliability analysis. This article proposes a new RSM-based approximation approach, named the adaptive improved response surface method (AIRSM), which uses the moving least-squares method in conjunction with a new weight function. AIRSM is tested with two simplified designs of experiments: saturated design and central composite design. Its performance on reliability analysis is compared with DR in terms of efficiency and accuracy in multiple RBDO test problems.  相似文献   

19.
为提高机械零部件的安全性和稳健性,应用可靠性稳健优化设计理论和多目标决策方法,建立了适合结构可靠性稳健优化设计的多目标优化模型.为能迅速准确地对具有约束条件的多目标优化模型进行求解,提出一种利用模糊理论对约束条件进行处理的方法,然后应用灰色粒子群算法对多目标优化模型进行求解.通过对正态分布参数和任意分布参数的扭杆可靠性稳健优化设计,表明该方法行之有效.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号