共查询到5条相似文献,搜索用时 15 毫秒
1.
Bartolini M Bertucci C Bolognesi ML Cavalli A Melchiorre C Andrisano V 《Chembiochem : a European journal of chemical biology》2007,8(17):2152-2161
The initial transition of amyloid beta (1-42) (Abeta42) soluble monomers/small oligomers from unordered/alpha-helix to a beta-sheet-rich conformation represents a suitable target to design new potent inhibitors and to obtain effective therapeutics for Alzheimer's disease. Under optimized conditions, this reliable and reproducible CD kinetic study showed a three-step sigmoid profile that was characterized by a lag phase (prevailing unordered/alpha-helix conformation), an exponential growth phase (increasing beta-sheet secondary structure) and a plateau phase (prevailing beta-sheet secondary structure). This kinetic analysis brought insight into the inhibitors' mechanism of action. In fact, an increase in the duration of the lag phase can be related to the formation of an inhibitor-Abeta complex, in which the non-amyloidogenic conformation is stabilized. When the exponential rate is affected exclusively, such as in the case of Congo red and tetracycline, then the inhibitor affinity might be higher for the pleated beta-sheet structure. Finally, by adding the inhibitor at the end of the exponential phase, the soluble protofibrils can be disrupted and the Abeta amyloidogenic structure can revert into monomers/small oligomers. Congo red and tetracycline preferentially bind to amyloid in the beta-sheet conformation because both decreased the slope of the exponential growth, even if to a different extent, whereas no effect was observed for tacrine and galantamine. Some very preliminary indications can be derived about the structural requirements for binding to nonamyloidogenic or beta-sheet amyloid secondary structure for the development of potent antiaggregating agents. On these premises, memoquin, a multifunctional molecule that was designed to become a drug candidate for the treatment of Alzheimer's disease, was investigated under the reported circular dichroism assay and its anti-amyloidogenic mechanism of action was elucidated. 相似文献
2.
Wiesehan K Buder K Linke RP Patt S Stoldt M Unger E Schmitt B Bucci E Willbold D 《Chembiochem : a European journal of chemical biology》2003,4(8):748-753
A mirror image phage display approach was used to identify novel and highly specific ligands for Alzheimer's disease amyloid peptide Abeta(1-42). A randomized 12-mer peptide library presented on M13 phages was screened for peptides with binding affinity for the mirror image of Abeta(1-42). After four rounds of selection and amplification the peptides were enriched with a dominating consensus sequence. The mirror image of the most representative peptide (D-pep) was shown to bind Abeta(1-42) with a dissociation constant in the submicromolar range. Furthermore, in brain tissue sections derived from patients that suffered from Alzheimer's disease, amyloid plaques and leptomeningeal vessels containing Abeta amyloid were stained specifically with a fluorescence-labeled derivative of D-pep. Fibrillar deposits derived from other amyloidosis were not labeled by D-pep. Possible applications of this novel and highly specific Abeta ligand in diagnosis and therapy of Alzheimer's disease are discussed. 相似文献
3.
The structure and aggregation state of amyloid beta-peptide (Abeta) in membrane-like environments are important determinants of pathological events in Alzheimer's disease. In fact, the neurotoxic nature of amyloid-forming peptides and proteins is associated with specific conformational transitions proximal to the membrane. Under certain conditions, the Abeta peptide undergoes a conformational change that brings the peptide in solution to a "competent state" for aggregation. Conversion can be obtained at medium pH (5.0-6.0), and in vivo this appears to take place in the endocytic pathway. The combined use of (1)H NMR spectroscopy and molecular dynamics-simulated annealing calculations in aqueous hexafluoroisopropanol simulating the membrane environment, at different pH conditions, enabled us to get some insights into the aggregation process of Abeta, confirming our previous hypotheses of a relationship between conformational flexibility and aggregation propensity. The conformational space of the peptide was explored by means of an innovative use of principal component analysis as applied to residue-by-residue root-mean-square deviations values from a reference structure. This procedure allowed us to identify the aggregation-prone regions of the peptide. 相似文献
4.