首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了氮含量对(Al Cr Ti Zr Nb)N高熵合金薄膜微观结构和力学性能的影响,利用射频磁控溅射工艺在不同N2和Ar流量比下制备了(Al Cr Ti Zr Nb)N高熵合金薄膜。结果表明,随着氮气流量的升高,(Al Cr Ti Zr Nb)N薄膜的沉积速率逐渐下降,Al Cr Ti Zr Nb合金薄膜的结构由非晶态转变为由Me-N(金属氮化物)构成的面心立方固溶体结构,(Al Cr Ti Zr Nb)N薄膜的择优生长取向为(200)晶面。同时随着N2流量的增加,(Al Cr Ti Zr Nb)N高熵合金薄膜的硬度首先快速升高,随后略微降低。当N2∶Ar=1∶1时,(Al Cr Ti Zr Nb)N薄膜硬度最大值28.324 GPa,此时(Al Cr Ti Zr Nb)N薄膜呈现单一的面心立方固溶体结构,饱和Me-N相的形成与各元素的固溶强化作用是其硬度的增长的主要原因。  相似文献   

2.
用脉冲直流多弧离子镀方法在W18Cr4V高速钢基体上沉积具有纳米结构的TiN薄膜,用XP纳米压入仪测量薄膜的硬度,研究了其硬度产生的机制.结果表明,厚度为2-3 μm、晶粒尺寸约为13-16 nm的TiN薄膜,硬度为36-43 GPa,远高于TiN的本征硬度(22-24 GPa).高温去应力退火实验证实,具有纳米结构的TiN薄膜的超高硬度不仅是由沉积过程中载能粒子轰击产生的残余应力引起,面心立方结构的TiN薄膜沿(111)密排面择优生长、纳米晶界强化以及膜层组织结构的致密性也是重要的原因.  相似文献   

3.
为改善H13钢的耐磨性能,本文采用工业型多弧离子镀设备在H13钢表面沉积耐磨硬质薄膜。借助扫描电子显微镜、X射线衍射仪、X射线光电子能谱仪、透射电子显微镜、维氏硬度计、摩擦磨损仪测试与分析TiAlN和TiCrAlSiCN薄膜的微观结构、硬度和摩擦学性能。低Al含量的TiAlN薄膜含面心立方结构的TiAlN固溶体和金属Ti相,TiAlN的200晶面呈择优取向;高Al含量的TiAlN薄膜为面心立方结构的TiAlN固溶体,111晶面呈择优取向。低Al含量的TiAlN薄膜硬度低(1871HV_(10 g))、高摩擦系数(0.8)和高磨损率(9.53×10~(-6)mm~3/N·m),高铝含量的TiAlN薄膜具有高硬度(3521 HV_(10 g))、摩擦系数明显下降(0.59)。TiAlN薄膜中加入Cr、Si和C元素形成的TiCrAlSiCN薄膜,其结构为纳米晶和非晶的复合结构,摩擦系数和磨损率降低是由于非晶相起减摩作用、纳米晶氮化物起耐磨作用;尤其低Si高C含量TiCrAlSiCN薄膜具有低摩擦系数(0.48)和磨损率(7.28×10~(-6)mm~3/(N·m)),高硬度(3613 HV_(10 g))。  相似文献   

4.
利用铝箔和银氨离子之间的电流置换反应快速制备了核壳结构的银-氧化铝树枝晶。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线粉末衍射仪(XRD)对样品进行了表征。结果表明,所制备的纳米银具有面心立方结构,无定型氧化铝薄膜均匀沉积在银树枝晶上形成壳层,有效地阻止了纳米银的氧化,提高了其稳定性。该制备方法简便易行、环境友好,且无需外加还原剂和保护剂。  相似文献   

5.
采用多弧离子镀技术,使用Ti Al Zr合金靶和Cr靶,在W18Cr4V高速钢基体上沉积(Ti,Al,Zr,Cr)N多组元氮化物膜.利用扫描电镜(SEM)、电子能谱仪(EDS)和X射线衍射(XRD)对薄膜的成分、结构和微观组织进行测量和表征;利用划痕仪、显微硬度计测评薄膜的力学性能.结果表明,获得的多组元氮化物膜仍具有B1 NaCl型的TiN面心立方结构;薄膜的成分除-50V偏压外,其它偏压下的变化均不明显;增大偏压可减少薄膜表面的液滴污染,提高薄膜的显微硬度及膜/基结合力,最高值可分别达到HV3300和190N.  相似文献   

6.
利用磁控溅射工艺制备了不同Al含量的(0~20%(原子分数))AlCoCrFeNi高熵合金薄膜,研究了Al含量对AlCoCrFeNi高熵合金薄膜微观结构和力学性能的影响。结果表明,Al元素的加入,使得原CoCrFeNi四元合金薄膜中的(200)峰消失,Al_xCoCrFeNi薄膜呈现出(111)晶面的择优生长取向。Al_xCoCrFeNi合金薄膜形成了面心立方单一均匀的固溶体。Al元素的加入起到了固溶强化的作用,使Al_xCoCrFeNi薄膜硬度相对于CoCrFeNi合金薄膜整体提高了1~2GPa。当Al含量为0.8时,薄膜的柱状晶宽度达到最小,Al_(0.8)CoCrFeNi薄膜在Hall-Petch关系作用下硬度显著增加,达到最大值18.7GPa。  相似文献   

7.
用共沉-胶化-低温干燥制备2Yb-8YSZ粉末,喷雾制粒获得球状颗粒.用激光粒度分析,X射线衍射仪(XRD),比表面测定仪(BET)和扫描电子显微镜(SEM)检测粉末和陶瓷体的性能,组织结构和相组成.结果表明,煅烧粉末的粒径为0.86μm,喷雾造粒的颗粒尺寸为17 μm,晶粒尺寸为100 nm,BET=26.66 m2/g.粉末和陶瓷体材料为面心立方结构.高于1 400 ℃烧结陶瓷体的烧结密度大于98%理论密度.陶瓷体电导率的测定结果表明,在1 400~1 600 ℃之间烧结,对材料的电导率影响不明显.2Yb-8YSZ具有高的离子电导率,操作温度大于600 ℃下的电导率达1×10-3 S/m.2Yb-8YSZ材料完全适用于作中温固体氧化物燃料电池(SOFC)的电解质.  相似文献   

8.
高熵合金氮化物薄膜性能优异,目前国内对Al0.3Cr Fe1.5Mn Ni0.5高熵合金的研究主要是对块体,对薄膜研究较少。采用直流磁控溅射技术在硅片上沉积了Al0.3Cr Fe1.5Mn Ni0.5高熵合金氮化物薄膜。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、纳米压痕仪等分析了基板偏压对薄膜的晶体结构、溅射效率、硬度和摩擦磨损性能的影响。结果表明:基板偏压为-50 V时,薄膜的晶体结构为面心立方结构(FCC),薄膜截面有明显的柱状结构;随着偏压幅值的增加,衍射峰的强度降低,晶粒尺寸减小,薄膜的溅射效率降低,硬度提高;基板偏压为-150 V时薄膜硬度最高,为13.74 GPa,此时薄膜的抗摩擦磨损性能最好。  相似文献   

9.
室温直流磁控溅射氮化钛薄膜研究   总被引:4,自引:0,他引:4  
利用直流磁控溅射在室温下沉积出性能优良的氮化钛薄膜,研究了N2流量和偏压对氮化钛薄膜性能和结构的影响,并采用扫描隧道显微镜(STM)技术对其表面形貌进行了较为详细的研究.结果表明,随着N2流量的增加,薄膜的结构从四边型混合结构转变为面心立方 NaCl型结构,最后变为无定型结构,薄膜结构的变化也使薄膜的硬度随之发生变化;施加负偏压不仅能让薄膜中缺陷减少,使膜层变得更致密,而且还能优化氮化钛晶粒,从而获得性能优良的薄膜.从TiN薄膜的表面形貌图可知,薄膜表面平整,缺陷很少,晶粒排列非常致密,且空位及表面缺陷较少.  相似文献   

10.
采用真空热蒸发技术在单晶硅基底上沉积PVDF薄膜.通过分析阻蒸温度对薄膜沉积速率和真空室气压变化的影响研究了PVDF镀膜过程.同时利用傅立叶变换衰减全反射红外光谱(ATR-FTIR)、X射线衍射(XRD)和差热分析(DSC)对薄膜的晶型结构进行了表征分析,结果发现,真空热蒸发技术可制备具有高度取向性的α晶相PVDF薄膜,且薄膜中不舍C=C键.相比于PVDF树脂粉末,所得薄膜的结晶度明显增大而分子量显著减小,实现了PVDF薄膜的低维化制备.  相似文献   

11.
基体偏压是影响磁控溅射TiNx薄膜结构和性能的关键因素,且TiNx薄膜的结构与其耐蚀性有极大的关系.利用直流反应磁控溅射技术,通过改变基体偏压在304不锈钢表面制备了具有结构缺陷和不同化学计量比的TiNx薄膜.采用原子力显微镜(AFM)、X射线衍射、场发射扫描电子显微镜、电化学技术研究了TiNx薄膜的表面形貌、相结构和耐蚀性与偏压的关系.结果表明:TiNx薄膜的表面结构与偏压明显相关,适当的偏压有利于获得细小、均匀、致密和光滑的TiNx薄膜;TiNx薄膜为B1-NaCl型面心立方结构,其择优取向为(111)面,增加偏压有利于获得符合化学计量比的TiNx薄膜;致密、光滑和符合化学计量比的TiNx薄膜具有更低的腐蚀倾向;不同化学计量比的TiNx薄膜的腐蚀均为局部剥离,且与该处高密度结构缺陷相关;减少TiNx薄膜的针孔等结构缺陷对于提高其耐蚀性极为重要.  相似文献   

12.
离子束辅助沉积制备TaN薄膜的X射线衍射分析   总被引:4,自引:0,他引:4  
利用离子束辅助沉积技术制备TaN薄膜,并对其进行X射线衍射分析,掠入射的X射线衍射分析得出:离子束辅助沉积制备的TaN薄膜胆面心立方结构,晶格常数α为0.4405nm。根据X射线衍射分析,用屈服强度表征有TaN薄膜的显微硬度为16-20GPa,与文献上报道的显微硬度值接近。  相似文献   

13.
采用多弧离子镀技术,通过采用Ti-Al合金靶及Ti-Nb靶的组合方式,在高速钢基体上制备了( TiAlNb)N多组元硬质反应膜。利用扫描电镜、X射线衍射仪对( TiAlNb)N膜层表面、断面形貌、成分、相结构进行观察测定;系统考察了( TiAlNb)N膜层的显微硬度、膜/基附着力、摩擦磨损及热震阻力等力学性能;结果表明,少量添加Nb的( TiAlNb)N多组元硬质膜为面心立方结构,具有良好的硬度、附着强度、耐磨性和抗热震性。  相似文献   

14.
采用硼化法制备的TiBCN导电陶瓷粉末成功热压烧结为块体材料。设置不同电火花线切割加工工艺参数,切割TiBCN块材。通过加工表面质量分析及SEM微观形貌观察,研究了线切割加工表面质量的影响因素及材料蚀除机制。研究结果表明:线切割加工TiBCN陶瓷材料,可以获得质量良好的加工表面,最小表面粗糙度Ra为0.4μm;脉冲电流Ip和脉间ti是影响加工表面质量的主要影响因素;虽然设置长脉宽te有利于提高蚀除效率,但脉间过小,易形成表面裂纹。TiBCN块材线切割加工最佳参数设置范围为:Ip=2~6,te=20~22μs,ti=65~75μs。线切割加工TiBCN陶瓷材料,有三种蚀除机理:剥离、熔融/再凝固、气化蒸发。  相似文献   

15.
通过对均苯四甲酸二酐-4,4’-二胺基二苯醚(PMDA-4,4’-ODA)型聚酰亚胺(PI)成品薄膜的表层水解处理、并在硫酸镍水溶液中实施离子交换以及随后的乙二醇热还原的方法,制备了聚酰亚胺/镍纳米复合薄膜。通过X射线衍射仪(XRD)、傅立叶变换红外光谱仪(FT-IR),透射电子显微镜(TEM)等方法研究了复合薄膜结构的变化,结果表明,经乙二醇热还原后,水解后的聚酰亚胺表层又重新形成亚胺环结构,并在其内部形成了均匀分散的具有面心立方晶型(FCC)的金属镍粒子,直径约为100 nm~200 nm。  相似文献   

16.
为实现电弧离子镀TiSiN薄膜成分可控,通过改变靶的相对电流在304不锈钢表面沉积TiSiN薄膜,采用厚度仪、能谱仪、扫描电镜、X射线衍射仪及摩擦试验研究了其形貌、结构及摩擦性能。结果表明:TiSiN薄膜中Si以非晶态Si3N4形式存在,抑制了面心立方结构的Ti N晶粒生长,形成纳米晶Ti N/非晶Si3N4(nc-Ti N/α-Si3N4)纳米复合结构;与Ti N薄膜相比,TiSiN薄膜具有更平整的表面,Si含量为4.08%(原子分数)时薄膜表面最光滑平整;Ti N薄膜的硬度为2 312 HK左右,掺杂Si元素后,由于细晶强化作用,薄膜的硬度显著提高,Si含量为2.76%(原子分数)时达到最大值,约为3 315 HK;进一步增加Si含量,TiSiN薄膜硬度略有下降;TiSiN薄膜的摩擦系数明显低于Ti N薄膜,且随着Si含量增加,摩擦系数逐渐变小,在Si含量为2.76%和4.08%(原子分数)时低至0.4左右。  相似文献   

17.
多组元高熵合金是一种具有五种以上组元的新型合金。通过真空电弧熔炼炉熔铸得到了不同铜含量的高熵合金Cu_xAlFeNiCrTi(x=1和0.5),再通过光学显微镜、X射线衍射仪、扫描电镜、透射电镜以及显微硬度计分析了高熵合金的显微组织、结构、硬度和耐腐蚀性能等。结果表明:高熵合金具有简单的相结构,合金硬度在800 HV以上,耐碱腐蚀性能优于耐酸腐蚀性能;随着铜元素含量的减少,合金结构由体心立方+面心立方结构变为体心立方结构,合金硬度增加,耐腐蚀性能提高。  相似文献   

18.
采用磁控溅射仪制备了一系列不同V含量的TaVN复合膜, 利用X射线衍射仪研究复合膜以及磨痕的相组成, 利用纳米压痕仪表征复合膜的硬度, 采用高温摩擦磨损实验机研究了复合膜的室温和高温摩擦性能。结果表明: TaVN复合膜的微结构为面心立方结构, 随着V含量的增加, 衍射峰择优取向由(200)转变为(111); TaVN薄膜的显微硬度随着V含量增加, 先增加后降低, 在V含量为18.25at%时, 显微硬度达到最大值, 为32.3 GPa; 在常温下, TaVN复合膜的摩擦系数随着V含量的增加而降低; 当温度从室温升高到800℃, 薄膜的摩擦系数先升高后降低。采用晶体化学理论讨论了TaVN复合膜和TaN单层膜在高温下的摩擦机理。  相似文献   

19.
采用多弧离子镀技术,使用Ti-Al-Zr合金靶和Cr单质靶,在wc-8%co硬质合金基体上制备了TiAlZrCr/(Ti,Al,Zr,Cr)N多组元梯度膜.分析了梯度膜的成分、结构和微观组织,并研究了梯度膜的显微硬度和膜/基结合力.研究结果表明,该多组元梯度膜为Bl-NaCl型的TiN面心立方结构;薄膜的成分是以TiAlZrCr合金为过渡层的(Ti,Al,Zr,Cr)N梯度膜;薄膜的组织致密均匀,是典型的柱状晶结构;沉积偏压为-50~-200V时,梯度膜均可获得比(Ti,Al,Zr,Cr)N单层膜更高的硬度(最高值为HV4000)和膜/基结合力(临界载荷大于200 N).  相似文献   

20.
采用气相蒸发法在烧结陶瓷体待连接的表面上形成TiN薄膜,随后将陶瓷体和金属体用TiN粉末化的层加以连接,再用热等静压设备在TiN薄层和金属体之间形成最适宜的金属。采用直接固相连接法使金属和陶瓷连接得既稳定又牢固。 (五)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号