首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
根据贝壳珍珠层的结构特点,以金属Ti层为软质层,对Ti B2陶瓷薄膜进行仿生增韧处理。采用磁控溅射法制备了不同调制比(Λ,tTi B2:tTi)的Ti/Ti B2周期性多层膜,并着重研究了调制比对多层膜的纳米硬度、弹性模量、膜基结合力以及断裂韧性的影响。研究结果表明:通过磁控溅射法制备的Ti/Ti B2多层膜具有清晰的纳米层状结构,表面致密平整,与基体有着良好的物理结合。多层膜的硬度和弹性模量随着调制比的增加而增大,而多层膜与基体的结合力呈现出先增大然后下降的趋势,当调制比Λ=3时,膜基结合力最高可以达到12.6 N;多层膜的断裂韧性随着调制比的增加呈现出先增大而后减小的趋势,当调制比Λ=5时多层膜的断裂韧性最好,其断裂韧度为2.26 MPa·m1/2,比Ti B2单层膜提高了60%以上。这是因为多层膜中的Ti子层可使裂纹尖端产生钝化作用,从而引起裂纹扩展路径发生偏转,提高了多层膜的断裂韧性。  相似文献   

2.
利用射频磁控溅射技术,在室温下合成了具有纳米调制周期的TiB2/TiAlN多层膜.分别采用表面轮廓仪、纳米力学测试系统、多功能材料表面性能实验仪和XRD,分析了调制周期对TiB2/TiAlN纳米多层膜机械性能的影响.结果表明大部分多层膜的纳米硬度和弹性模量值都高于两种个体材料混合相的值,在调制周期为25 nm时,多层膜体系的硬度超过了36GPa,性能达到较佳效果.  相似文献   

3.
采用磁控溅射法在医用钛合金Ti6Al4V和硅基体上沉积了Ti/TiB2多层膜。通过X射线衍射仪分析了薄膜的相结构,采用扫描电镜观察了薄膜的表面形貌和断面多层结构,利用电化学法研究了Ti/TiB2多层膜在Hank’s模拟体液中的抗腐蚀性能。研究结果表明:Ti层的引入有利于TiB2获得多晶结构,同时降低了薄膜表面的粗糙度,抑制了基体中Al3+的释放。沉积Ti/TiB2多层膜试样的自腐蚀电位,较单层膜相比有显著提高,达到13.2 mV,自腐蚀电流密度降低了4个数量级。分析认为这是由于Ti/TiB2多层结构增加了界面,降低了贯穿至基体表面的针孔等缺陷的数量,导致腐蚀介质经过针孔等缺陷与基体接触的机会变少,薄膜的耐蚀性得到改善。  相似文献   

4.
TiN/Ti多层膜韧性对摩擦学性能的影响   总被引:1,自引:0,他引:1  
考察了TiN/Ti多层膜韧性对其摩擦学性能的影响.采用磁过滤阴极弧沉积的方法制备了具有不同Ti子层厚度的TiN/Ti多层膜.用透射电镜对其层状结构及子层厚度进行了观察和分析,分别用Rockwell硬度计和UMT摩擦磨损试验机,进行了压痕测试和摩擦磨损实验.结果表明,TiN/Ti多层膜中Ti子层的加人显著提高了多层膜的韧性,相对TiN单层薄膜,当载荷较大时,多层膜的耐磨性有明显的改善.结合实验结果,讨论了TiN/Ti多层膜韧性对其耐磨性的影响.  相似文献   

5.
TiN/Ti多层膜调制比对摩擦磨损行为影响的研究   总被引:3,自引:0,他引:3  
考察了TiN/Ti多层膜调制比对其摩擦磨损行为的影响. 采用磁过滤阴极弧沉积的方法制备了具有不同调制比的TiN/Ti多层膜, 用扫描电镜和透射电镜对其层状结构及子层结构进行了观察和分析. 用纳米压痕和SRV摩擦磨损试验的方法, 对多层膜进行了纳米硬度和弹性模量测试以及摩擦磨损实验. 结果表明, 所制备的TiN/Ti多层膜层状结构清晰, 与基底结合良好, 调制比对多层膜的硬度和磨损特性影响较大, 而对摩擦系数的影响却不明显. 结合实验结果, 讨论了硬度与弹性模量的比值(H/E值)对TiN/Ti多层膜耐磨性的影响.  相似文献   

6.
2~3nm的Ti过渡层有效的提高了TiO2/Ag/TiO2多层膜的热稳定性同时对原始膜层的光学性能影响较小.通过AFM形貌分析表明Ti膜促进了Ag膜的连续性和抗结块性能.XRD分析表明在沉积态Ti层已经发生了氧化形成Ti2O3,从而提高了Ag膜与TiO2的结合力.热处理后促进了Ag(111)取向的发展,因此,Ag膜稳定性得到了提高.  相似文献   

7.
利用射频磁控溅射方法(衬底温度20℃)制备TaN,ReB2单层膜及ReB2/TaN纳米多层膜,并通过XRD,SEM,XP-2表面轮廓仪及纳米力学测试系统对薄膜的微结构和力学性能进行表征,分析调制周期对其影响.结果表明:TaN和ReB2均具有典型的六方结构,在其构成的多层膜中,当调制周期达到8~12nm附近时,纳米多层膜...  相似文献   

8.
本文利用高真空离子束辅助沉积系统(IBAD)在室温下制备了ZrB2、WNx和一系列ZrB2/WNx纳米多层膜,利用XRD、SEM、XP-2台阶仪、纳米力学测试系统表征了薄膜的微结构和机械性能,分析了调制周期对薄膜结构与机械性能的影响。结果表明:ZrB2具有典型的六角相及WNx为六方与立方混合相结构,ZrB2/WNx的多层膜则呈现多晶结构。所有多层膜的纳米硬度与弹性模量值都高于两种个体单层膜材料值。当调制周期Λ=9.6 nm,轰击能量为200 eV时,ZrB2/WNx的多层膜显示出最高的硬度(30.2 GPa)和弹性模量,内应力和划痕测试等机械性能也取得较好的结果。  相似文献   

9.
使用多弧离子镀技术在高速钢基体上制备了调制周期为5~40 nm的Ti/TiN纳米多层膜,用扫描电子显微镜(SEM)、X射线能谱仪(EDS)、X射线衍射仪(XRD)、纳米压痕仪和划痕仪等手段表征薄膜的微观结构和性能,研究了调制周期对Ti/TiN纳米多层膜性能的影响,并讨论了在小调制周期条件下Ti/TiN纳米多层膜的超硬效应和多弧离子镀技术对纳米多层膜硬度的强化作用。结果表明,与单层TiN相比,本文制备的Ti/TiN纳米多层膜分层情况良好,薄膜均匀致密,没有明显的柱状晶结构,TiN以面心立方结构沿(111)方向择优生长。随着调制周期的减小薄膜的硬度呈现先增大后减小的趋势,并在调制周期为7.5 nm时具有最大的硬度42.9 GPa和H/E值。这表明,Ti/TiN在具有最大硬度的同时仍然具有良好的耐磨性和韧性。Ti/TiN纳米多层膜的附着力均比单层TiN薄膜的附着力高,调制周期为7.5 nm时多层膜的附着力为(58±0.9) N。  相似文献   

10.
用电弧离子镀设备,在医用不锈钢基体上沉积Ti/TiN纳米多层薄膜,考察薄膜在Troyde’s模拟体液中的抗腐蚀性能.结果表明,在中性与酸性模拟体液中316L Ti/TiN(45/45s)体系的击穿电位分别提高5倍和2倍,腐蚀电流密度为基体的1/8与1/3,明显降低发生局部腐蚀的敏感性,但滞后环的出现说明薄膜被击穿后自修复能力较差.分析说明薄膜的纳米多层结构与纯Ti层的存在可有效提高医用不锈钢在Troyde’s模拟体液中的抗点蚀能力.  相似文献   

11.
调制周期对TaN/VN纳米多层膜的影响   总被引:2,自引:0,他引:2  
本研究选择钽和钒的氮化物作为个体层材料,利用射频磁控溅射系统制备TaN、VN及一系列的TaN/VN多层薄膜。通过XRD和纳米力学测试系统分析了该体系合成以后的晶体结构、调制周期对力学性能的影响。结果表明:多层膜的纳米硬度值普遍高于两种个体材料混合相的硬度值;当调制周期为30 nm时TaN/VN多层膜达到最大硬度31 GPa,结晶出现多元化,多层膜体系的硬度、弹性模量以及耐磨性能均达到最佳效果。  相似文献   

12.
武素梅  薛钰芝  苏梦 《真空》2007,44(4):29-32
用真空蒸发和自然氧化法在玻璃基底上制备了Ti/TiO2多层膜,并检测了薄膜的光电性能。电性能检测表明Ti/TiO2多层膜存在类负阻效应,多层膜的层间的类负阻效应比表面的更明显,薄膜的层间电阻率高于表面电阻率;用分光光度计测得试样退火前后的透射谱;用X射线衍射仪和扫描电镜检测了Ti/TiO2多层膜的晶体结构和表面形貌。  相似文献   

13.
利用射频反应磁控溅射方法,设计并制备了一系列不同调制周期的TiN/ZrN纳米多层膜.利用原子力显微镜、X射线衍射仪和纳米压痕仪对多层膜的表面形貌、微观结构和力学性能进行了系统表征.研究结果表明调制结构影响着薄膜的择优生长取向、沉积速率和表面形貌;在调制周期为7nm~26nm的范围内,随调制周期的增加,TiN/ZrN多层膜的织构取向有从(100)面向(111)面转变的趋势;TiN和ZrN层的沉积速率随调制周期的变化而变化.在调制周期为15nm左右时,表面粗糙度最小,减小和增加调制周期均导致粗糙度的增加.力学性能分析表明TiN/ZrN多层膜的硬度和弹性模量均高于单一TiN和ZrN的硬度和弹性模量,且随着调制周期的减小有逐渐增加的趋势.此外,根据调制结构和力学性能的分析结果,讨论了TiN/ZrN纳米多层膜的硬化机制.  相似文献   

14.
采用磁控溅射技术在单晶硅片上制备了恒定调制周期(λ=25,40 nm)、不同调制比(η=0.1~10.5)的Cu/Zr纳米多层膜。分别通过透射电子显微镜研究分析Cu/Zr多层膜的微观结构,通过四探针测量法系统研究Cu/Zr多层膜电阻率的尺寸效应。微观结构分析表明:Cu/Zr多层膜呈现周期性层状结构,层界面清晰。调制周期与调制比均显著影响Cu/Zr多层膜的电阻率(ρ)。相同调制周期下,η大于临界调制比(η_C≈1)时,ρ几乎与η无关;而η小于此临界调制比(η_C≈1)时,ρ随η减小急剧增大。利用Fuchs-Sondheimer和Mayadas-Shatzkes(FS-MS)传输模型可以对实验数据进行很好的拟合,拟合结果表明:当ηη_C时,晶界散射和界面散射协同作用是Cu/Zr多层膜电阻率变化的主控机制;当ηη_C时,晶界散射成为多层膜电阻率变化的主导因素。  相似文献   

15.
利用磁控溅射法在单晶硅上制备了不同层厚比的WS_x/a-C纳米多层膜(调制周期约50 nm)。用扫描电镜、X射线衍射、能谱、X射线光电子谱和Raman光谱对薄膜的形貌、成分和组织结构等进行了表征。采用纳米压痕仪、划痕仪和球盘式摩擦仪测试了薄膜的硬度、结合力和在大气环境下(相对湿度约70%)的摩擦学性能。结果表明:随着层厚比L_(a-C)/L_(WS_x)的增加,多层膜的n_s/n_w比由1.38增大至1.62,并伴随着WS_2尺寸的减小以及薄膜致密度和平整度的提高,a-C层和WS_x层的结构无明显变化;多层膜的磨损率仅为纯WS_x膜的1/3~1/4,摩擦因数由0.26降至0.2,硬度和磨损率均出现峰值,而结合力呈相反变化趋势。层厚比L_(a-C)/L_(WS_x)为1:39的多层膜的摩擦因数为0.26,磨损率为9.8×10~(-14)m~3/Nm,耐磨性最佳。  相似文献   

16.
PBII制备TiNx/DLC多层膜的结构及摩擦学性能   总被引:4,自引:0,他引:4  
采用等离子体基离子注入技术在30CrMnSi钢上制备了TiNx/DLC多层膜,通过X射线光电子谱和激光喇曼光谱测试分析了膜的结构特征,TiNx/DLC膜大气下的摩擦性能和在球盘式摩擦磨损试验机上进行。结果表明:DLC膜的结构强烈依赖于基权脉冲偏压,-5kV制得的DLC膜具有较多的C-H键结构,因而硬度最低,仅有8.3GPa;而-15kV的DLC膜由于含有较多的sp^3键,获得了最高的显微努氏硬度(23.6GPa)。DLC膜与GCr15钢球大气下的摩擦因数为0.17左右,其磨损性能由于TiNx,过渡层引入而显著提高。  相似文献   

17.
采用真空阴极电弧沉积技术,在TC11钛合金表面沉积同等厚度的三种不同调制周期Ti-Ti N-Zr-Zr N软硬交替多层膜。用扫描电镜、显微硬度计、结合力划痕仪和砂粒冲刷试验仪分析测试了多层膜的厚度、表面及截面形貌、硬度、膜/基结合力和抗砂粒冲蚀磨损性能等;重点研究了调制周期的改变对多层膜性能的影响。结果表明:随着周期数的增加,单一调制周期变薄,膜层中金属"液滴"颗粒等缺陷减少,同时也增加了大量的层间界面;层界面之间反复形核,晶粒细化,有利于多层膜表面光洁度、致密度、硬度、结合力和抗砂粒冲蚀能力的改善。  相似文献   

18.
采用真空阴极电弧沉积技术在TC11钛合金基体上沉积约10μm厚的Ti/Ti N/Zr/Zr N多层膜,通过对比镀膜前后试样的屈服强度、抗拉强度、疲劳强度、疲劳寿命,以及断口形貌,研究沉积Ti/Ti N/Zr/Zr N多层膜对基体疲劳性能的影响,探讨疲劳断裂机理。结果表明:多层膜对TC11钛合金基体材料的屈服强度和抗拉强度影响不大,但由于膜层硬而脆而降低了基体材料的收缩率和延伸率;多层膜提高基体材料的疲劳极限;低应力下,裂纹源在多层膜表面萌生,并向内部扩展,在多层结构的膜层界面处受到阻碍,发生偏转,从而提高基体疲劳寿命;高应力下,膜层容易破裂,裂纹源增多,降低基体疲劳寿命;应力水平在520 MPa到650 MPa范围内,疲劳寿命增量从+40.82%降到-36.88%。  相似文献   

19.
利用磁控溅射制备了银含量在100%至80%之间的单层银铜合金薄膜和TiO2/AgxCu-1x/Ti/TiO2:纳米四层膜。利用x射线衍射、扫描电子显微镜、扫描俄歇微探针,分光光度计、红外发射率测量仪对样品进行表征,研究了单层金属膜和多层膜的光学、电学性质随着银含量的变化以及热处理前后薄膜性能的变化。结果表明:相同厚度的合金膜,随着Ag含量的降低,导电性能下降,Ag含量低于80%的合金已不适合作为多层膜的金属层;1500C大气下热处理30min,纯银薄膜性质发生明显变化,明视透过率下降10%,方块电阻由2.5W/口增加至18W/□,红外发射率由0.17增加到0.69。AgCu合金薄膜性质未发生明显变化。方块电阻相近的TiO2/AgxCu1-x/Ti/TiO2纳米多层膜,经250℃大气下热处理40min后,TiO2/Ag/Ti/TiO2和TiO2/Ag80Cu20/Ti/TiO2纳米多层膜的性质变化较小,热稳定性较好,其余的多层膜性质发生较大变化,红外发射率显著增加。  相似文献   

20.
利用射频磁控溅射系统制备了调制周期为30 nm的具有不同调制比例的ZrN/W2N纳米多层膜。研究表明:ZrN/W2N纳米多层膜的界面清晰,通过把ZrN周期性地插入到W2N层,多层薄膜的整体应力得到缓解。在调制比tZrN∶tW2N=2∶3时,纳米多层膜的应力值最小。多层膜的硬度和弹性模量基本高于ZrN和W2N单层材料的平均值,随着调制比的减小,它们的值均有上升趋势,并在tZrN∶tW2N=2∶3时分别达到最高值34 GPa和424 GPa,同时多层膜的膜基结合强度也达到最佳效果,其临界载荷超过了100 mN。多层膜的机械性能改善明显与其调制层结构和多晶结构有着直接的联系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号