首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper an investigation of mechanical behaviour and elastic properties of recycled-aggregate concretes is presented. These concretes were prepared by alternatively using two different (coarse and finer coarse) recycled-aggregate fractions both made of recycled concrete coming from a recycling plant in which rubble from demolition is collected and suitably treated. Several concrete mixtures were prepared by using only virgin aggregates (as reference), 30% finer coarse recycled aggregate replacing fine gravel and 30% coarse recycled aggregate replacing gravel. Five different water to cement ratios were adopted as: 0.40, 0.45, 0.50, 0.55 and 0.60. Concrete workability was in the slump range of 190–200 mm. Compression tests were carried out after 28 days of wet curing. In addition, concrete elastic modulus and drying shrinkage were evaluated. Results obtained showed that structural concrete up to C32/40 strength class can be manufactured by replacing 30% virgin aggregate with recycled-concrete aggregate. Moreover, a correlation between elastic modulus and compressive strength of recycled-aggregate concrete was found and compared to those reported in the literature. Finally, on the basis of drying shrinkage results, particularly if finer coarse recycled-concrete aggregate is added to the mixture, lower strains could be detected especially for earlier curing time.  相似文献   

2.
The recycled aggregates obtained from crushed waste concretes have different characteristics from those of natural aggregates. For that reason, the mixture proportions and the fresh and hardened properties of recycled concretes are different. The performance of recycled concrete exposed to high temperatures is not a very well-known subject since most studies have been conducted on conventional concretes. Recycled concretes with water/cement (w/c) ratios of 0.40 and 0.70, and made with three different types of natural coarse aggregate were exposed to 500 °C for 1 h. These concretes were evaluated by the ultrasonic method, resonance frequency, static modulus of elasticity and compressive strength, before and after heating, and compared with those obtained on similar conventional concretes containing the same type of natural coarse aggregate. The conventional and recycled concretes made with quartzitic coarse aggregate performed better after the heat treatment.  相似文献   

3.
A judicious use of resources, by using by-products and waste materials, and a lower environmental impact, by reducing carbon dioxide emission and virgin aggregate extraction, allow to approach sustainable building development. Recycled aggregate concrete (RAC) containing supplementary cementitious materials (SCM), if satisfactory concrete properties are achieved, can be an example of such sustainable construction materials.In this work concrete specimens were manufactured by completely replacing fine and coarse aggregates with recycled aggregates from a rubble recycling plant. Also RAC with fly ash (RA + FA) or silica fume (RA + SF) were studied.Concrete properties were evaluated by means of compressive strength and modulus of elasticity in the first experimental part. In the second experimental part, compressive and tensile splitting strength, dynamic modulus of elasticity, drying shrinkage, reinforcing bond strength, carbonation, chloride penetration were studied. Satisfactory concrete properties can be developed with recycled fine and coarse aggregates with proper selection and proportioning of the concrete materials.  相似文献   

4.
A study undertaken at the University of Liverpool has investigated the potential for using recycled demolition aggregate in the manufacture of precast concrete building blocks. Recycled aggregates derived from construction and demolition waste (C&DW) can be used to replace quarried limestone aggregate, usually used in coarse (6 mm) and fine (4 mm-to-dust) gradings. The manufacturing process used in factories, for large-scale production, involves a “vibro-compaction” casting procedure, using a relatively dry concrete mix with low cement content (≈100 kg/m3). Trials in the laboratory successfully replicated the manufacturing process using a specially modified electric hammer drill to compact the concrete mix into oversize steel moulds to produce blocks of the same physical and mechanical properties as the commercial blocks. This enabled investigations of the effect of partially replacing newly quarried with recycled demolition aggregate on the compressive strength of building blocks to be carried out in the laboratory. Levels of replacement of newly quarried with recycled demolition aggregate have been determined that will not have significant detrimental effect on the mechanical properties. Factory trials showed that there were no practical problems with the use of recycled demolition aggregate in the manufacture of building blocks. The factory strengths obtained confirmed that the replacement levels selected, based on the laboratory work, did not cause any significant strength reduction, i.e. there was no requirement to increase the cement content to maintain the required strength, and therefore there would be no additional cost to the manufacturers if they were to use recycled demolition aggregate for their routine concrete building block production.  相似文献   

5.
The development of self-compacting concrete is considered as a milestone achievement in concrete technology due to several advantages. In order to be self-compactable the fresh concrete must show high fluidity besides good cohesiveness. For the purpose of evaluating these properties, several concrete mixtures were prepared with a water to cement ratio of 0.45 in the presence of an acrylic-based superplasticizer at a dosage ranging from 1% to 2% by weight of very fine material fraction (maximum 150 μm). Either limestone powder or fly ash or recycled aggregate powder (that is a powder obtained from the rubble recycling process) were used as mineral addition, in order to assure adequate rheological properties, in terms of cohesiveness, in the self-compacting concretes. Preliminary rheological tests were carried out on cement pastes containing these mineral additions. In some cases, recycled instead of natural aggregate was used by substituting either the coarse or the fine aggregate fraction. The fresh concrete properties were evaluated through slump flow, L-box test and segregation resistance. Compressive strength of concrete was determined at 1, 3, 7 and 28 days of wet curing. Results obtained showed that an optimization of self-compacting concrete mixture seems to be achievable by the simultaneous use of rubble powder and coarse recycled aggregate with improved fresh concrete performance and unchanged concrete mechanical strength.  相似文献   

6.
The variability observed in the composition of construction and demolition (C&D) waste is a problem that inhibits the use of recycled aggregates in concrete production. To contribute in this field, a research was carried out varying water/cement ratio and substitution percent of natural aggregates by recycled aggregates. The experimental program used samples of main Brazilian C&D waste sources, which are concrete, mortar and red ceramic bricks as well as tiles. Results of concrete compressive strength and elastic modulus were statistically analyzed and modeled. The study shows that for both concrete properties, recycled coarse aggregate was more influential than recycled fine aggregate. However, the use of fine recycled red ceramic increased concrete strength. Coarse recycled red ceramic aggregate and fine recycled concrete aggregate exercised the largest and the smallest influence, respectively, in concrete properties.  相似文献   

7.
The experimental studies on the behaviour of recycled aggregate concrete-filled steel tube (RACFST) stub columns after exposed to high temperatures are reported in this paper. Forty specimens, including 32 RACFST stub columns and 8 normal concrete-filled steel tube (CFST) stub columns as reference, were tested, and the failure pattern, load versus strain relation and ultimate strength of the specimens were presented and analysed. Five types of concrete were produced: one reference concrete with natural aggregates, two concrete mixes with recycled coarse aggregate (RCA) replacement ratios of 50% and 100%, and two concrete mixes with recycled fine aggregate (RFA) replacement ratios of 50% and 100%. The specimens were exposed to 300 °C, 600 °C and 800 °C for 3 h. The test results showed that, due to the existence of the recycled aggregates, the post-fire performance of RACFST stub columns was lower than the corresponding normal CFST specimens under the same maximum temperature suffered, and the RACFST specimens with RCA had a better behaviour than those with RFA under the same recycled aggregate replacement ratio.  相似文献   

8.
Experience shows that renderings produced with natural sands or construction and demolition waste (CDW) recycled aggregates could have a tendency to poor performance, due primarily to the variable quality of the sands, the absence of a well established mix design method for mortars, and other factors such as façade design, substrate quality and the placement technique. This paper focuses some of those factors, particularly the effectiveness of a mix design method for the control and analysis of the influence of the recycled aggregate composition on the properties of mortars and renderings performance. The leveling time of renderings was also studied. The mix ratio of Portland cement, natural fine sand and laboratory recycled sands – from ceramic blocks, concrete bricks and milled mortar – was defined by a mix design method previously studied. The method takes into account two parameters for the mix design of mortars: the “aggregates and plasticizing materials to cement ratio” and “the total materials finer than 75 μm” in the dry mortar. This study analyzes the effectiveness of the second parameter for the control of the performance of mortars and renderings. In Part I, results show how the geology of the river and CDW recycled sands and the “total material finer than 75 μm” parameter can be correlated in order to explain the properties of mortars, as the cement content is kept constant. The variations in water requirement and physical and mechanical properties of mortars were analyzed, namely drying shrinkage, compressive strength, tensile strength and compressive elastic modulus. The performance of the renderings will be discussed in Part II of this paper.  相似文献   

9.
This study examines the mechanical properties and the durability parameters of lightweight aggregate concretes (LWAC) incorporating rigid polyurethane (PUR) foam waste as coarse aggregates (8/20 mm). The influence of both the increasing incorporation of PUR foam waste and the presence of superplasticizer on the workability, bulk density, mass loss, drying shrinkage, compressive strength, dynamic modulus of elasticity, total porosity, gas permeability and chloride diffusion coefficient of the different concretes, has been investigated and analyzed. The results showed that the use of PUR foam waste enabled to reduce by 29–36% the dry density of concrete compared to that of the normal weight concrete (made without foam waste). The reduction of density was due to the increase of total porosity in the lightweight concretes, which also induced higher gas permeability and chloride diffusion coefficient. These negative effects on durability of concrete were lowered by improving the characteristics of the cementitious matrix. The mechanical properties of the LWAC ranged between 8 and 16 MPa for the compressive strength and between 10 and 15 GPa for the dynamic modulus of elasticity; the concrete mixture with the higher performances almost satisfied the mechanical and density criteria of structural lightweight concrete. These results consolidate the idea of the use of PUR foam waste for the manufacture of lightweight aggregate concretes.  相似文献   

10.
用不同粗骨料(石灰石碎石、再生粗骨料)、细骨料(河砂、人工砂、再生细骨料)两两相组合,共配制6组高性能混凝土进行对比试验,测试抗压强度、弹性模量、收缩和徐变4个性能指标并进行显著性分析。结果表明,骨料类型对高性能混凝土抗压强度的影响不明显,但对弹性模量、收缩和徐变性能都有显著影响。粗骨料对弹性模量和收缩性能的影响较为显著,细骨料对徐变的影响较为显著。再生粗骨料混凝土收缩、徐变早期发展较慢,而中后期的发展速度明显快于普通混凝土;再生细骨料混凝土收缩、徐变的发展速度始终远快于普通混凝土。在此基础上,提出了考虑粗、细骨料类型和骨料种类的高性能混凝土收缩和徐变的预测模型。  相似文献   

11.
In this work, the effect of Granulated Blast Furnace Slag (GBFS) and fly ash (FA) addition on the strength properties of lightweight mortars containing waste Poly-ethylene Terephthalate (PET) bottle aggregates was investigated. Investigation was carried out on three groups of mortar specimens. One made with only Normal Portland cement (NPC) as binder, second made with NPC and GBFS together and, third made with NPC and FA together. The industrial wastes mentioned above were used as the replacement of cement on mass basis at the replacement ratio of 50%. The size of shredded PET granules used as aggregate for the preparation of mortar mixtures were between 0 and 4 mm. The waste lightweight PET aggregate (WPLA)–binder ratio (WPLA/b) was 0.60; the water–binder (w/b) ratios were determined as 0.45 and 0.50. The dry unit weight, compressive and flexural–tensile strengths, carbonation depths and drying shrinkage values were measured and presented. The results have shown that modifying GBFS had positive effects on the compressive strength and drying shrinkage values (after 90 days) of the WPLA mortars. However, FA substitution decreased compressive and flexural–tensile strengths and increased carbonation depths. Nevertheless a visible reduction occurred on the drying shrinkage values of FA modifying specimens more than cement specimens and GBFS modified specimens. The test results indicated that, GBFS has a potential of using as the replacement of cement on the WPLA mortars by taking into consideration the characteristics. But using FA as a binder at the replacement ratio of 50% did not improve the overall strength properties. Although it was thought that, using FA as binder at the replacement ratio of 50% for the aim of production WPLA concrete which has a specific strength, would provide advantages of economical and ecological aspects.  相似文献   

12.
为了研究中国内陆城市使用再生混凝土替代普通混凝土的环境潜力以便为工程决策提供参考,以山西太原为例研究再生混凝土结构的碳排放。在确定系统边界和分析目标的基础上,根据实地调研与文献数据,确定了太原当地碳排放清单,建立了生命周期评价的基础。根据实际调研得到的混凝土配合比、原材料运输距离等参数,分析太原2个典型混凝土结构分别采用普通混凝土和再生混凝土在骨料生产、水泥生产、运输和填埋过程中所产生的等效碳排放。基于太原当地碳排放清单和选定的边界条件,以典型案例的实际数据为基础,进行运输距离的敏感性分析。结果表明:在采用太原当地碳排放清单、混凝土配合比和运输距离等数据的情况下,相比采用天然骨料混凝土,2个典型结构采用再生粗骨料取代率为100%的再生混凝土等效碳排放可分别降低3.25%和8.39%,且显著降低天然骨料开采及填埋场占用土地,具有较为显著的环境效益; 确定了采用再生混凝土取代天然骨料混凝土具有相对碳排放优势的范围; 天然骨料从矿山运输至搅拌站距离、废弃混凝土从拆除现场运输至填埋场距离以及废弃混凝土从拆除现场运输至再生建材工厂距离的临界值分别为18.3、8.5、18.8 km。  相似文献   

13.
由于再生混凝土收缩徐变效应大,导致长期荷载作用下,再生混凝土梁附加变形较大。文中以不同再生粗骨料取代率的再生混凝土梁长期受荷变形性能的试验研究为依据,研究其长期变形计算方法。通过考虑龄期的有效弹性模量法,将再生混凝土徐变系数引入梁截面附加曲率的计算,基于虚功原理给出长期荷载作用的时随变形计算公式|考虑再生粗骨料的二相性,通过普通混凝土的徐变收缩计算式,给出考虑附着水泥砂浆影响的再生混凝土徐变收缩调整系数|将其计算结果代入三种典型普通混凝土徐变收缩模型,得到再生混凝土徐变收缩模型,并通过时随变形计算公式计算再生混凝土梁长期荷载下的跨中变形值、跨中和加载点的附加变形值,与试验结果吻合较好。  相似文献   

14.
A study undertaken at the University of Liverpool has investigated the potential for using construction and demolition waste (C&DW) as aggregate in the manufacture of a range of precast concrete products, i.e. building and paving blocks and pavement flags. Phase II, which is reported here, investigated concrete paving blocks. Recycled demolition aggregate can be used to replace newly quarried limestone aggregate, usually used in coarse (6 mm) and fine (4 mm-to-dust) gradings. The first objective, as was the case with concrete building blocks, was to replicate the process used by industry in fabricating concrete paving blocks in the laboratory. The compaction technique used involved vibration and pressure at the same time, i.e. a vibro-compaction technique. An electric hammer used previously for building blocks was not sufficient for adequate compaction of paving blocks. Adequate compaction could only be achieved by using the electric hammer while the specimens were on a vibrating table. The experimental work involved two main series of tests, i.e. paving blocks made with concrete- and masonry-derived aggregate. Variables that were investigated were level of replacement of (a) coarse aggregate only, (b) fine aggregate only, and (c) both coarse and fine aggregate. Investigation of mechanical properties, i.e. compressive and tensile splitting strength, of paving blocks made with recycled demolition aggregate determined levels of replacement which produced similar mechanical properties to paving blocks made with newly quarried aggregates. This had to be achieved without an increase in the cement content. The results from this research programme indicate that recycled demolition aggregate can be used for this new higher value market and therefore may encourage demolition contractors to develop crushing and screening facilities for this.  相似文献   

15.
为研究再生粗骨料替代率、废弃纤维体积掺入量对废弃纤维再生混凝土受压徐变破坏时间、徐变变形和徐变度的影响规律,对普通混凝土、再生混凝土和废弃纤维再生混凝土试件在实验室条件下进行了85%、90%和95%应力水平的徐变试验。试验结果表明:随着再生粗骨料替代率的增加,徐变破坏的时间缩短、徐变变形及徐变度增大;随着废弃纤维体积掺入量的增加,徐变变形及徐变度减小,徐变破坏时间增加。废弃纤维的加入能有效缓解再生混凝土受压徐变的破坏程度。在考虑再生粗骨料替代率及废弃纤维体积掺入量的基础上,对ACI209R徐变预测模型进行修正,模型预测结果与试验值吻合较好。  相似文献   

16.
This paper presents the experimental results of recycled aggregate concrete (RAC) beams prepared with different amount of recycled coarse aggregate (RCA) subjected to low velocity impact. The recycled coarse aggregates are obtained from a demolished RCC culvert. Four concrete mixes with 0%, 25%, 50% and 100% RCA respectively are prepared. With each mix three beam specimens of size 1.15 × 0.1 × 0.15 m are prepared and tested under drop weight impact load. The behavior of the RAC beams are studied in terms of acceleration, strains and support reaction histories under impact load in addition to the physical and mechanical characteristics of RCA and RAC. It is observed that 25% RCA does not influence the strength of concrete. In addition, it is found that for a given impact energy (the energy imparted by the hammer per blow) the reactions and strains of RAC with 50% and 100% RCA are significantly lower and higher respectively than those of normal concrete and RAC with 25% RCA.  相似文献   

17.
再生混凝土抗碳化性能的研究   总被引:4,自引:0,他引:4  
系统研究了水胶比、水泥用量、再生粗集料性能、矿物掺和料、再生粗集料取代率、荷载水平等因素对再生混凝土碳化性能的影响.试验表明:再生混凝土的碳化性能不仅受新砂浆的影响,而且还受再生粗集料取代率及其自身强度的影响;矿物掺和料取代水泥使得再生混凝土的碳化深度增大;应力水平对再生混凝土碳化过程产生重大影响.  相似文献   

18.
为掌握再生混凝土的抗裂性能,通过单轴拉伸徐变试验,研究了再生粗骨料取代率(质量分数)、矿物掺和料掺量(质量分数)对再生混凝土早龄期拉伸徐变性能的影响.结果表明:再生粗骨料取代率为50%~100%的再生混凝土拉伸徐变较普通混凝土增加8%~31%;再生混凝土拉伸徐变随矿物掺和料掺量的增加而增大,粉煤灰单掺和粉煤灰+矿渣复掺可使再生混凝土拉伸徐变分别增加8%~32%,3%~22%.以混凝土拉伸徐变M-Burgers预测模型为基础,考虑再生骨料取代率和矿物掺和料掺量的影响,提出了适用于再生混凝土早龄期拉伸徐变的预测模型.  相似文献   

19.
Quality control of the performance of renderings made up of construction and demolition waste (CDW) recycled aggregates needs to be improved as CDW recycling can prove to be an alternative to waste disposal in developing countries. This experimental work focuses the effectiveness of a mix design method to control and analyze the recycled aggregate composition influence on the performance of mortars and renderings. Leveling time in the placement of renderings was also studied. The mix design method of mortars takes into account two parameters: the “aggregates and plasticizing materials to cement ratio” and “the total materials finer than 75 μm” in the dry mortar. In Part I of this study [Construction and Building Materials, submitted to publishing] the basic properties of mortars of several mixes were analyzed for a constant cement content around 155 ± 10 kg/m3. The performance of renderings is the scope of Part II of this paper. The initial bond strength and visible drying cracks under laboratory conditions were first analyzed for renderings applied on masonry panels with two times of leveling during placement. After five months, accelerated aging of renderings was carried out. Ten wetting–drying cycles upon thermal shock, from 80 °C to laboratory room temperature, were applied to the masonry panels, and cracks were assessed for each cycle. Bond tensile strength was not affected by the thermal shock, but additional cracks were seen on the renderings. The mix design parameters of the mortars and their hardened state properties were related to the cracking of the renderings. The results show that the parameters “total materials finer than 75 μm” and “aggregate to cement ratio” can be used for the mix design of mortars with recycled CDW aggregates. The increase in tensile strength and the reduction in the content of total fines smaller than 75 μm have proved efficient parameters to control cracking of renderings under thermal shock. Leveling time during rendering placement was a secondary parameter for cracking behavior.  相似文献   

20.
基于建筑废弃物资源化利用的发展理念,制备了包浆再生骨料混凝土,试验研究了应用不同处理方法的再生骨料对该混凝土材料的抗折强度、抗压强度和收缩性能的影响规律,建立了收缩模型,并运用秩和检验方法检验了其显著性;采用扫描电镜图像分析(SEM)研究了混凝土界面过渡区的结构。试验结果表明:包裹用水泥浆中胶粉和硅粉协同作用可以明显改善包浆再生骨料混凝土界面过渡区的结构,提高抗压强度和抗折强度;再生骨料包浆3 d拌制的混凝土强度较高,收缩最大,包浆28 d拌制使得混凝土收缩最小;硅粉对包浆再生骨料混凝土35 d之前的收缩抑制效应明显,35 d之后胶粉抑制效应显著;包浆再生骨料混凝土收缩率与龄期满足指数函数关系,且在水平α=0.01下其相关关系显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号