首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In this paper, the sulfate resistance of mortars made from ordinary Portland cement containing available pozzolans viz., fly ash and ground rice husk ash (RHA) was studied. Class F lignite fly ash and RHA were used at replacement dosages of 20 and 40% by weight of cement. Expansion of mortar prisms immersed in 5% sodium sulfate solution and the change in the pH values of the solution were monitored. The incorporation of fly ash and RHA reduced the expansion of the mortar bars and the pH values of the solutions. RHA was found to be more effective than fly ash. Examination of the fractured surface of mortar prisms, after a period of immersion, by scanning electron microscopy confirmed that sulfate attack of blended cement mortars was restricted owing to the reductions in calcium hydroxide and C/S ratio of the C–S–H gel in the blended cement mortar. In comparison to Portland cement mortar, less calcium sulfate and much less ettringite formations were found in the mortars made from blended cement containing RHA. The amounts of calcium sulfate and ettringite found in the blended cement mortar containing fly ash were also small but were slightly more than those of RHA mortar. Up to 40% of Portland cement could be replaced with these pozzolans in making blended cement with good sulfate resistance.  相似文献   

2.
对透水型生态混凝土在不同浓度硫酸盐干湿循环条件下进行了侵蚀试验,测定了透水型生态混凝土的抗压强度耐蚀系数、相对动弹性模量和质量变化率。并辅以SEM电镜和EDS成分分析,探究了不同浓度硫酸盐侵蚀下试件微观损伤过程和侵蚀破坏规律。试验结果表明:在硫酸盐干湿环境下,透水型生态混凝土的抗压强度耐蚀系数、质量变化率均呈现出先上升再下降的变化趋势。浓度越高,侵蚀破坏的周期越短。通过微观分析发现,试件侵蚀产物多为硫酸钠结晶、钙矾石和石膏以及少量碳化碳硫硅钙石结晶。此外,实验室烘干会加速试件本身和侵蚀结晶碳化,生成碳硫硅钙石结晶。  相似文献   

3.
为模拟混凝土内部与盐溶液接触、外部与空气接触的半浸泡环境(如隧道衬砌混凝土所处环境),将混凝土一端与Na_2SO_4溶液接触,另一端暴露在空气中,通过改变环境相对湿度、水灰比和Na_2SO_4溶液质量分数,分析这3种因素对混凝土水分蒸发速率的影响,对混凝土内部的盐溶液传输机理是否符合灯芯效应传输原理进行验证;同时采用核磁共振(NMR)和X射线衍射(XRD)分析,从微观角度分析其中原因.结果表明:环境相对湿度越低、水灰比越大,混凝土水分蒸发速率越大;Na_2SO_4溶液质量分数越大,混凝土水分蒸发速率反而越低,说明当混凝土处于半浸泡环境下时,其中的Na_2SO_4溶液传输过程并不符合灯芯效应传输原理.NMR和XRD分析发现,在盐溶液传输过程中,混凝土孔隙内的盐溶液会发生化学反应,生成钙矾石和石膏等化学侵蚀产物,细化和堵塞孔隙,且环境相对湿度越大、盐溶液质量分数越大,化学反应程度越大,从而造成其中的水分蒸发速率降低越明显.  相似文献   

4.
混凝土硫酸盐侵蚀过程及主要产物研究进展   总被引:2,自引:0,他引:2  
概述了在硫酸盐环境中混凝土的侵蚀破坏过程,以及硫酸盐类主要侵蚀产物包括石膏、钙矾石(AFt)、硅灰石膏(C3SC^-S^-H15)等生长特性的研究进展。硫酸盐侵蚀是一个比较复杂的过程,不同的环境介质、热湿条件等引起的侵蚀过程和产物也相应不同,尤其是钙矾石的生长特性和物理力学性能仍需要进一步的研究。针对硫酸盐侵蚀机理,实际工程中采用的一些抗硫酸盐侵蚀措施具有良好的效果。  相似文献   

5.
模拟大体积混凝土条件下生成的钙矾石的形态   总被引:5,自引:0,他引:5  
利用半定量XRD和SEM-EDS分析、观察了补偿收缩水泥砂浆在模拟大体积混凝土内部温湿度条件下的水化产物相组成和微观形貌,延迟钙矾石生成所导致的试件开裂是由于微晶状钙矾石在硬化砂浆中均匀膨胀所致。  相似文献   

6.
A comparative study has been performed on the sulfate resistance of Portland limestone cement (PLC) mortars exposed to extraordinary high sulfate concentrations (200 g/l). PLCs have been prepared by using two types of clinkers having different C3S/C2S ratios and interstitial phase morphologies. Blended cements have been prepared by replacing 5%, 10%, 20% and 40% of clinker with limestone. Cubic (50 × 50 × 50 mm) and prismatic (25 × 25 × 285 mm) cement mortars were prepared. After two months initial water curing, these samples were exposed to three different sulfate solutions (Na2SO4 at 20 °C and 5 °C, MgSO4 at 5 °C). Solutions were not refreshed and pH values of solutions were monitored during the testing stage. The compressive strength and length changes of samples have been monitored for a period of 1 year. Additional microstructural analyses have been conducted by XRD and SEM/EDS studies. Results indicated that in general, limestone replacement ratio and low temperature negatively affect the sulfate resistance of cement mortars. Additionally, clinkers of high C3S/C2S ratios with dendritic interstitial phase structure were found to be more prone to sulfate attack in the presence of high amounts of limestone.From the results, it is postulated that in the absence of solution change, extraordinary high sulfate content modified the mechanism of sulfate reactions and formation of related products. At high limestone replacement ratios, XRD and SEM/EDS studies revealed that while ettringite is the main deterioration product for the samples exposed to Na2SO4, gypsum and thaumasite formation were dominant products of deterioration in the case of MgSO4 attack. It can be concluded that, the difference between reaction mechanisms of Na2SO4 and MgSO4 attack to limestone cement mortars strongly depends on the pH change of sulfate solutions.  相似文献   

7.
糯米灰浆是中国古代建筑史上的一项重要科技发明,为了使该传统工艺科学化地为现代文化遗产保护服务,采用SEM和XRD等技术手段,探讨了纸筋、硫酸铝和二水石膏3种添加剂对糯米灰浆性能的影响及其机理。结果表明:纸筋对糯米灰浆抗压强度和耐冻融性的改进最为明显;硫酸铝对改善糯米灰浆的干燥收缩性效果最佳;二水石膏的加入,对样品的耐冻融性并无改进,而且,随着其含量的增加,样品的抗压强度和表面硬度增幅降低。在文化遗产保护实践中,建议采用6%的硫酸铝或3%的纸筋作为糯米灰浆的添加剂。  相似文献   

8.
盐湖、盐渍土地区水位变幅区的混凝土材料劣化问题突出。该文开展不同质量浓度硫酸盐溶液干湿循环侵蚀作用下玄武岩纤维混凝土侵蚀试验、材料力学试验和微观测试,测试分析混凝土试件抗压强度、劈裂抗拉强度、质量变化、相对动弹性模量等参数的演变规律,揭示不同浸泡浓度及龄期下玄武岩纤维混凝土的劣化机制;结合混凝土试件侵蚀后的表观形态和细观结构特征,研究不同侵蚀周期下掺玄武岩纤维混凝土的细观结构演变机理。结果表明:掺入长度6mm玄武岩纤维的混凝土抗压及劈裂抗拉强度增强效果优于长度12mm纤维;硫酸盐和干湿循环侵蚀作用下玄武岩纤维混凝土劣化规律受硫酸盐溶液浓度、干湿循环次数和纤维掺量3个因素协同作用影响,干湿循环作用下硫酸盐侵蚀产物主要为石膏型侵蚀和钙矾石型侵蚀。掺玄武岩纤维混凝土抗硫酸盐侵蚀能力明显优于于素混凝土。  相似文献   

9.
This study is devoted to the characterization of two historic waterproof-coating mortars taken from the ottomans monuments of “Ghar El Melh” in, northeast Tunisia. The first waterproof mortar was recovered from the aqueduct channel, which was used to supply boats with water. The second type came from the terrace cupola of “Sidi Ali El Mekki” fortress. To characterize each mortar, physical, mineralogical, and chemical analyses were performed. These revealed that the two samples were mainly made of air-hardening lime mixed with pozzolanic additions. The binder/aggregate ratio was 0.6 for the aqueduct coating and 0.3 for the cupola. The relative presence of gypsum in the mortar of the aqueduct indicated its sulfatic alteration, but the two coatings were free of ettringite. Although these were in permanent contact with corrosive conditions, the two waterproof coatings showed good durability.  相似文献   

10.
This paper presents an experimental study and micro-mechanism discussion on gypsum role in the mechanical improvements of cement-based stabilized clay (CBSC). A soft marine clay at two initial water contents (i.e. 50% and 70%) was treated by reconstituted cementitious binders with varying gypsum to clinker (G/C) ratios and added metakaolin to facilitate the formation of ettringite, followed by the measurements of final water contents, dry densities and strengths in accordance with ASTM standards as well as microstructure by mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM). Results reveal that the gypsum fraction has a significant influence on the index and mechanical properties of the CBSC, and there exists a threshold of the G/C ratio, which is 10% and 15% for clays with 50% and 70% initial water contents, respectively. Beyond which adding excessive gypsum cannot improve the strength further, eliminating the beneficial role. At these thresholds of the G/C ratio, the unconfined compressive strength (UCS) values for clays with 50% and 70% initial water contents are 1.74 MPa and 1.53 MPa at 60 d of curing, respectively. Microstructure characterization shows that, besides the common cementation-induced strengthening, newly formed ettringite also acts as significant pore infills, and the associated remarkable volumetric expansion is responsible, and may be the primary factor, for the beneficial strength gain due to the added gypsum. Moreover, pore-filling ettringite also leads to the conversion of relatively large inter-aggregate to smaller intra-aggregate pores, thereby causing a more homogeneous matrix or solid skeleton with higher strength. Overall, added gypsum plays a vital beneficial role in the strength development of the CBSC, especially for very soft clays.  相似文献   

11.
我国西部地区盐湖分布广泛,土壤及地下水中含有高浓度硫酸盐、镁盐及氯盐,与衬砌喷射混凝土发生一系列物理化学反应,造成其结构耐久性能下降。为系统研究盐湖侵蚀环境喷射混凝土耐久性能劣化规律及机理,以5%Na2SO4+5%MgSO4+3.5%NaCl混合溶液为侵蚀介质,采用干湿交替法,分别模拟盐湖环境地下水及隧道衬砌侵蚀方式,开展喷射混凝土耐久性试验,对其物理力学性能、侵蚀产物矿物组成及含量、微观形貌、孔结构和离子含量进行测试分析。喷射混凝土SO2? 4含量随侵蚀时间快速增大,Cl-和Na+含量缓慢增大,而Ca2+和混凝土pH值降低。喷射混凝土侵蚀过程包含水镁石、石膏及钙矾石形成阶段,C-S-H分解和碳硫硅钙石形成阶段,M-S-H形成等三个阶段。最终,在碳硫硅钙石、水镁石、石膏、钙矾石以及结晶盐所形成的膨胀应力和结晶压力共同作用下,喷射混凝土内部孔数量及空气含量增大,形成网状裂纹,性能快速劣化。模筑混凝土微裂缝在盐结晶形成的结晶压作用下快速开裂,与气孔形成宏观裂缝导致断裂。钢纤维可显著消减喷射混凝土内部应力,提高其抗侵蚀能力。  相似文献   

12.
With the aim of studying the influence of cement composition on resistance in high sulfates environment, standard mortars have been produced using ordinary Portland cement (CEM I – 32.5) and limestone cement with 35% limestone (CEM II/B-LL – 32.5). The pore size distribution of the cement pastes was measured. The mortars were immersed in a 5% Na2SO4 solution at 20 °C for 1.5 years and the caused deterioration was been visually observed at a regular basis. Furthermore, the mortars expansion was being estimated by measuring the change of length. At the end of the experiment the compressive strength of the mortars was measured. The deterioration products of the mortars have been identified by means of X-ray diffraction, optical microscopy and environmental scanning electron microscopy. The limestone cement based mortar presented cracking that started at the age of 6 months and continued throughout the experiment. It also displayed high expansion after 250 days of immersion in a 5% Na2SO4 caused, as proved using the analytical techniques, by the formation of gypsum and ettringite. Concluding, the cement with 35% limestone did not perform as well as ordinary Portland cement under the most aggressive laboratory conditions. Hence, it is obvious that the addition of limestone in the cement leads to a totally different behaviour than Portland cement with respect to the resistance in high sulfates environment.  相似文献   

13.
水泥-废石膏加固软土的试验研究   总被引:31,自引:1,他引:31       下载免费PDF全文
利用废石膏和水泥配合加固软土,与单纯用水泥加固相比,可显著提高加固效果。在水泥-废石膏的水化物中,既有水泥产生的水化硅酸钙胶结松散的土颗粒,又有水泥与石膏产生的钙矾石膨胀填充孔隙。加固土孔隙水中CaO,OH-浓度决定水泥-废石膏的适用性及其增强效果。  相似文献   

14.
含铝固化剂固化软土的试验研究   总被引:2,自引:1,他引:2  
用普通硅酸盐水泥、石膏和一种含铝膨胀组分构成的复合固化剂(PC+G+Al固化剂),选取2种有代表性的试样,进行软土固化试验研究,并与单纯使用水泥(PC)和水泥-石膏(PC+G)固化剂加固软土的效果进行比较分析。研究结果表明:对2种试样,PC+G+Al固化剂加固效果优于其他2种固化剂;PC+G固化剂只对孔隙比大、含水率高的试样加固效果优于PC固化剂的加固效果。PC+G+Al和PC+G固化剂的水化物中都产生钙矾石,利用钙矾石生成的固相膨胀作用填充孔隙,而钙矾石的生成在固化土中是否产生增强效果,主要取决于钙矾石与水化硅酸钙凝胶生成过程的协调性。  相似文献   

15.
Removal of sulfate from high-strength wastewater by crystallisation   总被引:2,自引:0,他引:2  
Sulfate causes considerable problems in anaerobic digesters, related to generation of sulfides, loss of electrons (and hence methane), and contamination of gas streams. Removal of sulfides is generally expensive, and still results in methane losses. In this paper, we evaluate the use of precipitation for low-cost sulfate removal, in highly contaminated streams (>1 gS L−1). The main precipitate assessed is calcium sulfate (gypsum), though the formation of complex precipitates such as jarosite and ettringite to remove residual sulfate is also evaluated. The four main concerns in contaminated wastewater are:- high solubility, caused by high ion activity and ion pairing; slow kinetics; inhibition of nucleation; and poisoning of crystals by impurities, rendering product unsuitable for reuse as seed. These concerns were addressed through batch experiments on a landfill wastewater with a similar composition to other sulfate rich industrial wastewaters (high levels of organic and inorganic contaminants). Crystallisation rates were rapid and comparable to what is observed by others for pure solutions (2-5 h). The kinetics of crystallisation showed a 2nd order dependence on supersaturation, which have implications for crystalliser design, as discussed in the paper. No spontaneous nucleation was observed (seed was required). Seed poisoning did not occur, and product crystals were as effective as pure seed. Solubility was increased by an order of magnitude compared to a pure solution (2.6 × 10−3 M2 vs. 0.22 × 10−3 M2). As evaluated using equilibrium modelling, this was caused equally by non-specific ion activity, and specific ion pairing. Jarosite and ettringite could not be formed at reasonable pH and temperature levels. Given the lack of complex precipitates, and relatively high solubility, gypsum crystallisation cannot practically be used to remove sulfate to very low levels, and gas-sulfide treatment will likely still be required. It can however, be used for low-cost bulk removal of sulfate.  相似文献   

16.
海水中存在的硫酸根离子传输至混凝土内部将导致其腐蚀破坏。针对矿粉掺量0~65%的C40引气混凝土进行海洋潮汐区、大气区和水下区腐蚀1~2a,测试其水溶和酸溶硫酸根离子浓度分布;分析水泥净浆中的腐蚀产物类型及含量。试验结果表明:海洋不同腐蚀区带混凝土中硫酸根离子传输量及传输深度排序为:潮汐区水下区大气区。混凝土中反应硫酸根离子与总硫酸根离子的关系服从线性函数分布,反应量占总硫酸根离子量的90%以上,反应的硫酸根离子量随腐蚀龄期增加而增加。海洋潮汐区和水下区生成的腐蚀产物量高于大气区,主要是钙矾石和石膏;海洋大气区暴露混凝土的腐蚀产物为钙矾石。对于P.I.52.5水泥制备的C40混凝土而言,掺加65%的矿粉有助于提升混凝土抗海洋硫酸根离子侵蚀能力。  相似文献   

17.
我国西部地区土壤及地下水中含有高浓度、及Cl,与隧道衬砌喷射混凝土发生一系列物理化学反应,造成其结构耐久性能退化。为系统研究复合盐侵蚀喷射混凝土耐久性能退化规律及机理,分别以10%Na2SO4溶液和5%Na2SO45%MgSO43.5%NaCl混合溶液为侵蚀介质,采用干湿交替法,开展喷射混凝土耐久性试验。、及Cl与氢氧化钙和铝相反应生成水镁石、石膏和Friedel盐,延缓钙矾石形成。复合盐侵蚀喷射混凝土物理力学性能退化速度明显小于硫酸盐侵蚀。硫酸盐侵蚀喷射混凝土以表面水泥砂浆和骨料的剥落为主,复合盐侵蚀主要以表面龟裂最终断裂为主,且裂缝中充满白色结晶盐。分析侵蚀喷射混凝土矿物组成和微观结构,硫酸盐侵蚀喷射混凝土产物主要为钙矾石和石膏,而复合盐侵蚀喷射混凝土产物组成复杂,包括碳硫硅钙石、水镁石、石膏、钙矾石、水化硅酸镁和结晶盐。硫酸盐侵蚀喷射混凝土中含量高于复合盐侵蚀,而混凝土pH值低。  相似文献   

18.
硫酸盐侵蚀下石膏形成引起的水泥净浆破坏   总被引:5,自引:0,他引:5  
通过掺加石灰石粉,对长期浸泡在5%(质量分数)Na2SO4溶液中的水泥净浆试件所产生的有害化合物进行了研究.结果表明:在Na2SO4溶液侵蚀下,水泥净浆试件因产生石膏膨胀开裂、表面软化而形成从表到里的破坏,石膏膨胀是其主要劣化方式;水泥净浆破坏机理是石膏膨胀和胶凝物质分解;保持浸泡溶液的pH值,会抑制水泥净浆试件中钙矾石的生成.因此,在水泥混凝土中加入石灰石粉可以检验其抗硫酸盐侵蚀性能.  相似文献   

19.
The durability can be described as concrete’s resistance to the destructive influences of a medium containing acid, sulfate and/or various chemicals and mechanical effects. The main objective of this study is investigation of mechanical and mineralogical properties of cement mortar with different pozzolanic compositions and subjected to sulfated medium. In the study, the mortars produced with cement samples having seven different compositions and varied with an air-entraining agent were subjected to the influence of sulfate. This study is supported by thin section and X-ray powder diffraction (XRPD) investigations, in addition to being subjected to the basic tests, such as compression and flexure. The most important findings obtained from the study are that the compact structure has more effective properties against sulfate effects for cement mortars than pozzolanic materials’ effects and the highest pozzolanic material ratio is restricted about 25–30% by mass because this ratio is a boundary of mechanical properties.  相似文献   

20.
基于混凝土中含硫水化产物化学特性的差异,采用氯化钡和氯化钙溶液处理水泥水化浆体样品,将碳硫硅钙石(TSA)与其他含硫水化产物进行分离,进而测得TSA含量.结果表明:采用该方法测定的硫酸钠硫化钙单硫型水化硫铝酸钙(AFm)石膏钙矾石(AFt)TSA混合物中的TSA含量,平均准确率可达92%以上;用该法定量测试了浸泡于硫酸盐溶液中水泥净浆试件的TSA含量,其含量顺序为硫酸镁>硫酸铝>硫酸钠.由此可见,用该化学定量法定量碳硫硅钙石可行而且可靠.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号