首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the results of a study to compare the properties of concretes prepared with the use river sand, crushed fine stone (CFS), furnace bottom ash (FBA), and fine recycled aggregate (FRA) as fine aggregates. Two methods were used to design the concrete mixes: (i) fixed water–cement ratio (W/C) and (ii) fixed slump ranges. The investigation included testing of compressive strength, drying shrinkage and resistance to chloride-ion penetration of the concretes. The test results showed that, at fixed water–cement ratios, the compressive strength and the drying shrinkage decreased with the increase in the FBA content. FRA decreased the compressive strength and increased the drying shrinkage of the concrete. However, when designing the concrete mixes with a fixed slump value, at all the test ages, when FBA was used as the fine aggregates to replace natural aggregates, the concrete had higher compressive strength, lower drying shrinkage and higher resistance to the chloride-ion penetration. But the use of FRA led to a reduction in compressive strength but increase in shrinkage values. The results suggest that both FBA and FRA can be used as fine aggregates for concrete production.  相似文献   

2.
This paper presents results of a study conducted to evaluate the mechanical properties and durability characteristics of ordinary Portland cement (OPC) and blended cement (silica fume and fly ash) concrete specimens prepared with electric arc furnace dust (EAFD). Concrete specimens were prepared with and without EAFD. In the silica fume cement concrete, silica fume constituted 8% of the total cementitious material while fly ash cement concrete contained 30% fly ash. EAFD was added as 2% replacement of cement in the OPC concrete and 2% replacement of the total cementitious content in the blended cement concretes. Mechanical properties, such as compressive strength, drying shrinkage, initial and final setting time, and slump retention were determined. The durability characteristics were evaluated by measuring water absorption, chloride permeability, and reinforcement corrosion. The initial and final setting time and slump retention increased due to the incorporation of EAFD in both OPC and blended cement concretes. The drying shrinkage of EAFD cement concrete specimens was more than that of concrete specimens without EAFD. The incorporation of EAFD was beneficial to OPC concrete in terms of strength gain while such a gain was not noted in the blended cement concretes. However, the strength differential between the blended cement concretes with EAFD and the corresponding concretes without EAFD was not that significant. The water absorption and chloride permeability, however, decreased due to the incorporation of EAFD in both the OPC and blended cement concretes. The corrosion resistance of OPC and blended cement concrete specimens increased due to the addition of EAFD.  相似文献   

3.
The strength and drying shrinkage of concretes with the natural sand replaced with furnace bottom ash (FBA) at 0%, 30%, 50%, 70% and 100% by mass, were studied at fixed water–cement ratios (W/C) and fixed slump ranges.The results showed that, at fixed water–cement ratios, the compressive strength and the drying shrinkage decreased with the increase of the FBA sand content. However, at fixed workability, the compressive strength was comparable with that of the control concrete, while the drying shrinkage increased with the increase of the FBA sand content beyond 30% replacement level. Nevertheless, 30% of the natural sand can be beneficially replaced with the FBA sand to produce concrete in the compressive strength range from 40 to 60 N/mm2 without detrimentally affecting drying shrinkage properties of the concrete.  相似文献   

4.
This paper presents the effects of aggregate properties such as strength, porosity, water absorption, bulk density and specific gravity on the strength and durability of lightweight fly ash aggregate concrete (LWAC). The influence of properties of four aggregates (sintered lightweight fly ash aggregates, cold-bonded lightweight fly ash aggregate and normalweight aggregate) on mechanical and durability properties of concrete is discussed. Experimental results revealed that durable high-strength air-entrained lightweight concretes could be produced using sintered or cold-bonded lightweight fly ash aggregates, having comparable performance with the normalweight concretes. The use of lightweight aggregates (LWA) instead of normalweight aggregates in concrete production decreased the strength and stiffness due to the higher porosity and lower strength of the aggregate included in the concrete. However, permeability of sintered fly ash aggregate lightweight concretes was comparable and slightly lower than normalweight concrete whereas permeability of cold-bonded fly ash lightweight concrete was greater than the others. All concretes had a durability factor greater than 85, which met the requirements by showing quite perfect resistance to freeze–thaw.  相似文献   

5.
The paper reports on the changes in properties of concretes with different cement types associated with environmental conditions. Three strength classes with three different cement types (ordinary portland cement PC 42.5 (CEM I 42.5), portland composite cements PKC-A 42.5 (CEM II/A-M 42.5) and PKC-B 32.5R (CEM II/B-M 32.5R)) were used in the study. Also, a mixture was prepared with PC 42.5 and silica fume (SF). The effects of variable ambient conditions on plastic shrinkage of fresh concrete and cement paste, compressive strength, modulus of elasticity, capillary absorption and drying shrinkage of hardened concrete were investigated. In contrast to PC 42.5 cement paste, plastic shrinkage cracks were observed in PKC-B 32.5 and PKC-A 42.5 pastes. Water absorption coefficients of all concretes stored in natural environment were higher at all ages as compared to coefficients of concretes kept in laboratory. Drying shrinkage values of concrete with SF, except the first week, were significantly lower than those of others. Although different behaviors for different cement types were observed, water–cement ratio was one of the dominating factors determining the behavior of concrete. This ratio should be lowered to improve the durability of concrete.  相似文献   

6.
从几个典型工程中分别选取了玄武岩、角闪岩和灰岩这3种人工骨料以及花岗岩天然骨料,研究了骨料的长期吸水特性及其对MgO微膨胀混凝土变形性能的影响,利用温度应力试验机比较了用不同骨料配制的MgO微膨胀混凝土的开裂敏感性.试验结果表明,180d龄期时骨料的饱和面干吸水率相比24h时有大幅增长,骨料吸水率越高,混凝土的自收缩和干缩变形越大;采用玄武岩和角闪岩骨料配制的MgO微膨胀混凝土的开裂温度较低,元素聚类分析揭示用玄武岩和角闪岩骨料配制的混凝土界面区Ca,Mg元素富集程度较为显著,更多水化产物在此区域堆积,从而增加了界面区的密实度,有助于提高混凝土的抗裂能力.  相似文献   

7.
This research investigates the properties of fresh and hardened concretes containing locally available natural lightweight aggregates, and mineral admixtures. Test results indicated that replacing cement in the structural lightweight concrete developed, with 5–15% silica fume on weight basis, caused up to 57% and 14% increase in compressive strength and modulus of elasticity, respectively, compared to mixes without silica fume. But, adding up to 10% fly ash, as partial cement replacement by weight, to the same mixes, caused about 18% decrease in compressive strength, with no change in modulus of elasticity, compared to mixes without fly ash. Adding 10% or more of silica fume, and 5% or more fly ash to lightweight concrete mixes perform better, in terms of strength and stiffness, compared to individual mixes prepared using same contents of either silica fume or fly ash.  相似文献   

8.
The recycling of concrete is an important means to a sustainable material flow. The limited reuse of recycled aggregates is due to the lower quality of concrete production. Various methods have been attempted to minimise the negative effect. In this paper, the effect of adding fly ash as well as incorporating polyethylene terephthalate (PET) fibres in a concrete mix to mitigate the lower quality of recycled aggregates in concrete is presented. The study consists of two stages: in stage 1 the effects on some of the fresh and hardened concrete properties were studied and the percentage replacement of the natural coarse aggregate (NCA) by the recycled coarse aggregate (RCA) was established. From a chosen percentage of 10%, 20%, 30%, 50% and 100%, we found that the 20% replacement (RCA20) did not seem to jeopardise the compressive strength and water absorption of RCA concrete. Experimental studies were further carried out in stage 2 on the improvement on the mechanical properties of RCA20 concrete by incorporating 25% fly ash and 0.5% and 1.0% PET fibre. Beneficial effects of appropriated fly ash and PET fibre content applied on the RCA were obtained.  相似文献   

9.
This paper presents the results of a research program carried out at University of Aveiro, Portugal to evaluate the properties of concrete made with crushed bricks replacing natural aggregates. Two types of brick were investigated. The bricks were crushed in order to obtain a usable aggregate. The properties investigated were the workability and the density of fresh concrete, and the compressive strength, tensile splitting strength, modulus of elasticity and stress–strain behaviour of hardened concrete. Replacement ratios of natural aggregates by 15% and 30% were investigated as well as water/cement ratios of 0.45 and 0.5. Strength indexes were used to assess the effectiveness of aggregate replacement. The results of concrete produced with recycled aggregates were compared with a reference concrete produced with natural limestone aggregates currently used in Portugal. Observed results indicate that ceramic residuals could be used as partial replacement of natural aggregates in concrete without reduction of concrete properties for 15% replacement and with reductions up to 20% for 30% replacement. The type and the manufacturing process of bricks seem to influence the properties of the resulting concrete. The properties and aesthetics of concrete with bricks indicate the possibility of using this type of concrete in precast applications.  相似文献   

10.
研究了高吸水树脂(SAP)对C40和C60火山灰混凝土自收缩、干燥收缩及水分损失率的影响,并探讨了SAP对火山灰混凝土收缩性能的作用机理.结果表明:SAP内养护可以显著降低C40和C60火山灰混凝土的自收缩,提高火山灰混凝土的抗裂性,且内养护减缩率与内养护水胶比呈正比关系;SAP内养护增大了火山灰混凝土的干燥收缩和水分损失率,且增大幅度随着内养护引入水量的增加而增大;根据干燥环境中火山灰混凝土的水分损失率与干燥收缩的拟合关系得出了火山灰混凝土产生干燥收缩时的临界水分损失率;虽然SAP内养护增大了火山灰混凝土的干燥收缩,但其总收缩较基准混凝土显著降低.  相似文献   

11.
减缩剂对混凝土早期自收缩的影响   总被引:4,自引:0,他引:4  
采用自行设计制作的混凝土早期自收缩测试装置,研究了减缩剂在不同混凝土强度等级、掺粉煤灰或矿粉与否等对混凝土早期自收缩的影响。试验结果表明,减缩剂能有效降低混凝土的早期自收缩,减缩率随混凝土强度等级提高而提高。对掺粉煤灰或矿粉的混凝土,减缩剂同样具有优异的早期减缩效果。粉煤灰和矿粉能在一定程度上减小混凝土的早期收缩,对减少混凝土的早期收缩裂缝是有利的。减水剂极大地增加混凝土的早期收缩,即使掺入减缩剂,其收缩率仍大于不掺减水剂的混凝土。因此,对掺减水剂的混凝土应特别加强早期养护。  相似文献   

12.
粉煤灰掺量对C50混凝土性能的影响   总被引:1,自引:0,他引:1  
根据某长江公路大桥索塔及箱梁用混凝土的性能要求和高密实低收缩的设计原则,系统地对不同粉煤灰掺量的C50高强混凝土拌合物的和易性、坍落度损失和含气量,以及硬化混凝土的抗压强度、抗折强度和弹性模量等进行了试验研究和理论分析。研究结果表明:粉煤灰可改善新拌混凝土的和易性,并显著降低坍落度损失;随着粉煤灰掺量的增加,混凝土7d强度下降明显,28d强度增幅较大;如果增大胶凝材料总用量,则可以一定程度上减小粉煤灰掺量的影响。  相似文献   

13.
水灰比、胶集比及水泥浆量对混凝土塑性收缩裂缝的影响   总被引:1,自引:0,他引:1  
新拌混凝土浇注成形后在模拟环境条件下进行试验。固定单方混凝土用水量的试验结果表明:较低和较高水灰比混凝土拌合物在塑性阶段不易开裂,而中间某一水灰比时对应的裂缝面积最大;这一最大裂缝面积对应的中间水灰比为0.4或0.45左右。胶集比或水泥浆量对混凝土塑性收缩裂缝的影响与水灰比的情况相似。水分蒸发速率随水灰比的增大而增大。  相似文献   

14.
不同取代率再生粗骨料混凝土的力学性能   总被引:3,自引:0,他引:3  
胡敏萍 《混凝土》2007,(2):52-54
系统研究了坍落度相同的情况下再生粗骨料取代率对混凝土基本性能的影响.试验中再生粗骨料的掺入量分别为0,30%,50%,70%和100%,通过调节用水量使各组混凝土达到相同的坍落度.主要研究了达到相同坍落度时混凝土的用水量以及再生粗骨料取代率对混凝土坍落度、立方体抗压强度、棱柱体抗压强度、峰值应变和泊松比、弹性模量、劈裂抗拉强度以及抗折强度的影响.试验结果表明,再生粗骨料取代率对上述各性能指标均有一定影响,但程度不同.同时发现,除劈裂抗拉强度和抗折强度外,普通混凝土各基本力学性能指标间的关系不适用各种再生骨料取代率的混凝土.  相似文献   

15.
In this study, experiments have been carried out to evaluate the utilization of bottom ash (by-product of power plant) as fine and coarse aggregates in high-strength concrete with compressive strength of 60–80 MPa. Firstly, the chemical and physical characteristics of bottom ash particles, such as chemical compositions, specific gravity and SEM images, were investigated. Further experiments were conducted by replacing fine and coarse bottom ash with normal sand and gravel varying in percentages (25%, 50%, 75%, and 100%). The effect of fine and coarse bottom ash on the flow characteristics and density of concrete mixture was investigated in the aspect of particle shapes and paste absorption of bottom ash. Mechanical properties, such as compressive strengths and modulus of elasticity and flexural strength of high-strength concrete with bottom ash were evaluated. It was found that the slump flow of fresh concrete was slightly decreased from 530 mm to 420 mm when coarse bottom ash was replaced 100% of normal coarse aggregates, while fine bottom ash did not affect the slump flow. Moreover, it also showed that both of fine and coarse bottom ash aggregates had more influence on the flexural strength than compressive strength.  相似文献   

16.
This paper reports result of a study conducted to investigate the effect of curing methods on the properties of plain and blended cement concretes. The concrete specimens were prepared with Type I, silica fume, and fly ash cement concretes. They were cured either by covering with wet burlap or by applying two types of curing compounds, namely water-based and acrylic-based. The effect of curing methods on the properties of plain and blended cement concretes was assessed by measuring plastic and drying shrinkage, compressive strength, and pulse velocity. Results indicated that the strength development in the concrete specimens cured by covering with wet burlap was more than that in the specimens cured by applying water – and acrylic-based curing compounds. Concrete specimens cured by applying curing compounds exhibited higher efficiency in decreasing plastic and drying shrinkage strain than specimens cured by covering with wet burlap. The performance of acrylic-based curing compound was better than that of water-based curing compound. The data developed in this study indicate that curing compounds could be utilized in situations where curing with water is difficult. Among the two curing compounds investigated, acrylic-based curing compound performed better than the water-based curing compound.  相似文献   

17.
秦鸿根  张亚梅  孙伟  李毓鑫 《工业建筑》2003,33(8):13-15,24
利用磨细矿渣粉、粉煤灰及二者复掺取代 30 %的水泥配制缓凝大流动性C80混凝土 ,测试了混凝土的力学性能以及干燥收缩、抗冻性、抗硫酸盐侵蚀性能、干热 -水浸泡循环作用下的性能等。研究表明 ,磨细矿渣粉单独掺入混凝土中仅有微弱的减水效应 ,但与高效减水剂共同使用时显示了显著的辅助减水效应。以掺合料与缓凝保塑高效减水剂共同配制的C80混凝土不仅流动性好 ,4h坍落度经时损失小 ,而且具有优异的力学性能 ,特别是掺磨细矿渣粉的混凝土早期力学性能与对比组接近。同时 ,掺磨细矿渣粉、粉煤灰或二者复掺的C80混凝土具有比对比混凝土更优越的抗干燥收缩性能、抗冻性、抗硫酸盐侵蚀性能及抗干热-水浸泡循环作用的性能  相似文献   

18.
This paper presents the fresh and hardened properties of high-strength concrete comprising byproduct fine crushed aggregates (FCAs) sourced from the crushing of three different types of rocks, namely granophyre, basalt, and granite. The lowest void contents of the combined fine aggregates were observed when 40% to 60% of natural sand is replaced by the FCAs. By the replacement of 40% FCAs, the slump and bleeding of concrete with a water-to-cement ratio of 0.45 decreased by approximately 15% and 50%, respectively, owing to the relatively high fines content of the FCAs. The 28 d compressive strength of concrete was 50 MPa when 40% FCAs were used. The slight decrease in tensile strength from the FCAs is attributed to the flakiness of the particles. The correlations between the splitting tensile and compressive strengths of normal concrete provided in the AS 3600 and ACI 318 design standards are applicable for concrete using the FCAs as partial replacement of sand. The maximum 56 d drying shrinkage is 520 microstrains, which is significantly less than the recommended limit of 1000 microstrains by AS 3600 for concrete. Therefore, the use of these byproduct FCAs can be considered as a sustainable alternative option for the production of high-strength green concrete.  相似文献   

19.
Under the project “EcoBéton” (Green concrete) funded by the French National Agency (ANR), concrete mixtures with a high quantity of mineral additions, such as blast-furnace slag and fly ash were studied. A first approach to quantify their cracking risk was to measure their plastic shrinkage evolution. In parallel, the evolution of other parameters such as setting, capillary depression and porosity were also monitored to relate this deformation to the evolution of the microstructure of the studied mixtures. Setting monitoring by means of ultrasonic measurements allows obtaining significant macroscopic information such as hardening process and rigidity evolution. The correlation between these different parameters shows that the plastic shrinkage evolution can be divided into three phases driven by different mechanisms. Moreover, it appears that the use of mineral additions has an effect on the plastic shrinkage behaviour, but this impact is not proportional to the percentage of additions. It depends on the hydration process and the microstructure of the cementitious materials. So, it seems that an optimum content of cement replacement by mineral additions must be sought to limit the development of plastic shrinkage of concretes with mineral additions at early age. However, a high rate of substitution of cement may affect the early age compressive strength of the concrete. So these mixtures were also optimised to obtain a significant compressive strength at an early age, but this optimisation leads to a higher risk of cracking for some of them.  相似文献   

20.
Water retainability of a porous aggregate is defined, including absorption as well as adsorption. This moisture property is important for mix proportion and quality control of fresh concrete. An alternative test method to determine water retainability of porous fine aggregates is developed. By the conventional test method for obtaining absorption, it is not possible to reach the saturated surface dryness by collapsed-cone criterion due to the high inter-particle friction of the porous aggregate. The test method was designed, based on the concept of gravitational removal of excess water from the porous aggregate sample. Two procedures i.e. static and accelerated methods were studied to achieve the acceptable reliability within a reasonable time of testing. The comparison between test results of water absorption according to ASTM C 128 and those of water retainability by the proposed method indicated that this method had a better testing precision for all porous fine aggregates, as proved by the smaller standard deviations within the test results given by different individuals. Feasibility of the method was also validated by comparing the properties of conventional concrete (CVC) and self-compacting concrete (SCC) made of normal and porous fine aggregates. The water content of mixtures incorporating expanded clay and two types of bottom ash as river sand replacement of 0, 10, and 20% were adjusted, on the basis of the water absorption from the ASTM C 128 method and the water retainability from the proposed method. From the comparison, it was shown that the proposed test method was effectively applied as an alternative test for water retainability of porous fine aggregates in the quality control of fresh concrete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号