首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为提高马氏体不锈钢的耐蚀和耐磨性能,选择40Cr13不锈钢为基材、纯铌板为靶材,采用双辉等离子表面冶金技术在不锈钢表面制备合金化层.用SEM、GDOES、XRD等方法分析渗铌温度对铌合金层组织、成分、相组成、表面形貌及硬度的影响,并对渗层形成机制及表面硬化机理进行了研究.结果表明:在900~1 000℃形成的铌合金层组织均匀致密,合金层主要由Nb2C、Nb C、Fe2Nb、Cr2Nb及铌组成;合金层表面粗糙度随渗铌温度的提高而增加;合金层厚度随渗铌温度改变发生不同变化规律,950℃渗铌形成的渗层约13μm,900和1 000℃渗铌后合金层厚度均为7μm左右;不同温度渗铌后试样的表面硬度与基体相比均有较大幅度的提高,1 000℃渗铌后试样表面硬度高达约985 HV0.025,900℃渗铌后约758 HV0.025,而950℃渗铌后表面硬度最低,约698 HV0.025.  相似文献   

2.
采用等离子表面合金化技术,在20钢表面渗铬,并进行双辉等离子渗碳,形成高铬高碳合金层.利用GDS、XRD、OM、SEM研究了合金层成分、相组成及组织形貌,并通过摩擦试验对合金层耐磨性进行了分析.研究结果表明:表面高碳高铬层含铬量和含碳量以及碳化物的质量分数(40%以上)高于一般冶金高铬铸铁;渗层主要包含M23C6和M7C3型碳化物,这些碳化物均匀弥散分布,尺寸通常在1μm左右,并无共晶碳化物组织;合金层表面显微硬度达到1000~1600 HV,耐磨性比GCr15轴承钢提高8.6倍.  相似文献   

3.
利用液相等离子体电解渗技术分别在340,360V和380V槽电压下对纯铁进行硼碳氮三元共渗(PEB/C/N)表面处理。分析纯铁表面PEB/C/N共渗层的形貌、成分、相组成和显微硬度分布。采用球-盘摩擦磨损仪评估槽电压对渗层摩擦磨损性能的影响,并分析渗层与ZrO_2球对磨时磨损机理。纯铁表面的PEB/C/N三元共渗层厚度随着放电电压升高而增大,最高硬度也相应增加。380V处理1h后硼碳氮三元共渗层中渗硼层和过渡层厚度分别达到26μm和34μm,渗层最高硬度可以达到2318HV。硼碳氮三元共渗层的磨损率仅为纯铁基体的1/10。硼碳氮共渗处理大幅度降低纯铁的摩擦因数和磨损率,但不同槽电压下制备的PEB/C/N共渗层的摩擦因数和磨损率变化较小。  相似文献   

4.
王涛 《材料保护》2019,52(2):87-90,125
实验室小型共渗炉内制备的试样与工业化渗层试样在结构和性能方面不同。为更合理地评价工业化渗层质量,通过工业随炉共渗制备渗锌小尺寸试样,分析了渗锌防腐蚀层的厚度、微观结构、元素分布、硬度,并测试其耐盐雾性能。结果表明:渗锌后工件表面结构可分为Zn-Fe合金层和含Zn过渡层,Zn-Fe合金层在表层,Zn含量较高,是防腐蚀防锈的主要结构层; Zn-Fe合金层与铁基体的界面过渡层厚度约20μm,Zn-Fe合金层与基体结合紧密;渗锌温度高、保温时间长有助于提高工件表面渗层厚度,随炉渗锌小尺寸试样增重法测得的渗层厚度最小,较适用于监控每炉工件共渗质量;合金层硬度高于基体,硬度向基体方向逐步降低,合金层和离界面60μm处的硬度均高于基体30 HV以上,可提高工件表面的耐磕碰性能;常用渗锌温度(420℃)热处理对工件表面硬度无影响,渗锌工件表面硬度增加主要在于表面形成了合金层;随着渗锌层厚度增加,渗层样品耐盐雾性能逐渐提高,渗层厚度宜≥60μm。  相似文献   

5.
采用双辉等离子渗铬技术,首先在560℃对T10钢进行不同时间的渗铬,再对已渗铬试样进行4h离子氮化,研究了该工艺对渗镀铬层硬化效果的影响.结果表明:双辉渗铬后的渗层由厚3~5μm的沉积层+扩散层组成,沉积层组织致密并与基体结合良好,基体组织和晶粒度与渗铬前基本一致;沉积层铬浓度达45%(质量分数)以上,内有20~25μm的扩散层,铬浓度向内呈梯度分布;表面物相均由Fe,Fe-Cr,Cr7C3,Cr23C6等组成;渗层表面显微硬度达650~850HV,向内逐步降低,呈梯度分布.沉积层厚度、渗层深度、渗层的铬浓度及显微硬度等均随渗铬时间的增加而增加.渗层经离子氮化后的组织与氮化前的组织无明显变化,但表面物相为Fe-Cr,Cr7C3,Cr23C6,CrN,Fe4N,表面显微硬度提高到1000~1350HV,较未氮化前提高约60%以上.  相似文献   

6.
为提高钛合金表面的耐磨性能,采用等离子表面合金化技术在Ti6A14V(TC4)合金表面形成含Nb的梯度改性层,然后进行渗C复合处理,得到Nb-C复合改性层,研究了改性层的显微组织形貌、成分分布、相结构特征及硬度分布,并进行了球盘摩擦磨损实验.结果表明,Nb、C元素呈梯度分布,合金层主要由Ti、TiC、Nb2C、NbC等...  相似文献   

7.
选用等原子比Ni-Ti合金板作为源极,利用等离子表面合金化技术在Ti6Al4V合金表面制备Ni-Ti共渗层.主要研究了温度、工作气压、源极电压、工件电压对渗层显微组织、成分的影响,得出合理的工艺参数.分析了渗层成分分布、组织形貌、相结构、硬度及摩擦学性能.结果表明,在温度为900℃、工作气压为35Pa时进行共渗,渗层组织均匀,白亮层厚度约18μm,成分基本成梯度分布.Ni-Ti合金层耐磨性与基材相比显著提高.  相似文献   

8.
采用自主研发的低温气体渗碳炉对AISI316和AISI304奥氏体不锈钢进行低温气体渗碳处理,在不损害原有耐蚀性的基础上,增加其表面强度,提高其耐磨性。运用金相、硬度和XRD表征奥氏体不锈钢的渗碳层的组织,采用电化学工作站检测其耐蚀性能,采用摩擦磨损试验检测其耐磨性。结果表明,470℃低温气体渗碳处理的AISI316和AISI304奥氏体不锈钢,表层硬度从250HV0.25 N增加到800~1 000 HV0.25 N,有效硬化层都达到36μm以上,耐磨性提高2~3倍,耐蚀性能基本不变。  相似文献   

9.
Q235钢表面双层辉光离子强化层摩擦磨损性能   总被引:1,自引:0,他引:1  
徐晋勇  高原  宋宜梅  高清  徐重 《材料工程》2006,(Z1):239-242
在真空容器中,设置提供含有欲渗合金元素Mo,Cr的供给源和被渗Q235钢试样,利用双层辉光离子渗金属技术,在试样表面进行Mo-Cr共渗,之后经渗碳、淬火及回火复合处理形成强化层.Mo-Cr共渗层厚度在100μm以上,表面Mo含量可达20%(质量分数,下同),Cr含量达到10%.复合处理后表面硬度达到1300HV0.025.M-200磨损试验机磨损实验表明,摩擦因数平均在0.1左右,平均相对耐磨性是GCr15钢经渗碳、淬火及回火后的2.25倍.  相似文献   

10.
本文利用双辉技术在20钢表面设计了六种不同顺序C、N、Ti三元共渗的工艺方案,以研究合金元素渗入顺序对渗层的影响.用金相显微镜、EDS、XRD、划痕仪、磨损仪分别对渗层的微观组织、成分、物相、结合力、耐磨性进行了表征.结果表明:不同的合金元素渗入顺序会对渗层的形成、组织、结构及性能产生很大的影响;采用方案1~3未能在基体表面形成渗层;采用方案4得到约7μm厚渗层,渗层内含有固溶相Ti2C0.06和Ti2N,渗层的表面硬度和耐磨损性能分别较基体提高了3倍和1倍多;采用方案5、6均能获得渗层厚度为40μm、含硬质相TiC、TiN的渗层,渗层与基体结合良好,其表面硬度超过2100HV,表面耐磨损性能较基体提高了8倍以上.  相似文献   

11.
常规双辉等离子渗铬温度较高(800℃以上),能耗较大.为此,采用双辉等离子渗金属技术,在560℃下对45钢进行了表面渗铬硬化,制备出了性能良好的表面合金改性层.采用X射线衍射仪及其附带的能谱仪测定了渗层物相及成分,采用金相显微镜考察了渗层组织形貌,并采用显微硬度计检测了渗层硬度.结果表明:渗层组织由沉积层及扩散层组成;渗层表层为2~3 μm的沉积层,含铬量达到48%以上,沉积层致密并与扩散层结合紧密;内有20~25 μm的扩散层,其合铬量呈梯度分布;表面物相由Fe-Cr、Cr7C3、Cr23C6等组成;渗层表面显微硬度达600~700 HV,硬度向内呈梯度分布.  相似文献   

12.
为了提高奥氏体不锈钢的表面硬度并保持其良好的耐蚀性,采用自主开发的低温渗碳工艺对AISI316奥氏体不锈钢进行渗碳处理。运用金相显微镜和显微硬度计表征了渗碳强化层组织,通过电化学试验检测了渗碳强化层的耐蚀性。结果表明:渗碳温度越高,渗碳强化层表面硬度越高,耐蚀性越差;经过470℃低温渗碳处理的AISI316奥氏体不锈钢表面硬度从原来的300 HV0.25 N增加到800~1 000 HV0.25 N,有效硬化层达36.1μm,而其耐蚀性保持不变。  相似文献   

13.
采用等离子熔覆技术,在45钢基体上制备添加稀土CeO_2的AlCoCuFeMnNi高熵合金涂层。利用XRD,SEM和EDS研究涂层的显微组织和相组成,并测试其显微硬度和磨损性能。结果表明:合金涂层主要由BCC枝晶和FCC枝晶间组织构成。热力学计算表明,未添加稀土CeO_2的涂层中有少量AlCoNi相,而且其枝晶内析出了大量富Fe颗粒,涂层硬度值在260~420HV0.2间呈梯度变化,摩擦因数在0.16~0.57之间。添加1%(质量分数)的稀土CeO_2后,基体中Fe元素向涂层内部的扩散程度降低,涂层底部形成一条宽约32μm的富Fe胞晶过渡层,涂层硬度在400HV0.2左右,摩擦因数稳定在0.28~0.31之间,磨损量为添加前的74.4%,细晶强化是涂层磨损性能提高的主要原因。  相似文献   

14.
通过双辉等离子渗金属技术对Ti2Al Nb合金进行等离子渗碳,采用扫描电镜、X射线分析和线扫描等手段来分析渗碳层的微观形貌、元素分布和表面相组成,并且利用冲蚀磨损试验来对比两者的抗冲蚀磨损性能。结果表明,等离子渗碳可以在基体表面形成一个大约30μm的渗碳层;基体显微硬度为393 HV0.1,渗碳层的硬度则达到979 HV0.1;Ti2Al Nb合金抗冲蚀磨损能力在渗碳后有了明显提升。  相似文献   

15.
Q235钢表面TiN陶瓷化与Cr-Mo共渗表面强化耐腐蚀性能研究   总被引:1,自引:0,他引:1  
高原 《材料工程》2007,(11):66-71
介绍了一种在Q235钢表面用等离子直接复合渗镀合成氮化钛的方法.该工艺方法形成的组织是Ti固溶体扩散层上分布弥散细小氮化钛颗粒和表面氮化钛沉积层,沉积层与渗层和基体为冶金结合,不会产生剥落.渗镀层表面硬度1600~3400HV.X射线衍射结果表明,渗镀层表面为纯氮化钛层,(200)晶面的衍射峰最强,具有明显的择优取向.在Q235钢表面进行双层辉光离子铬钼共渗,表面Mo含量达到4%(质量分数,下同),Cr含量达到12%.然后进行超饱和渗碳,表面含碳量达到2.0%以上,超过平衡碳计算值.随后进行淬火 低温回火热处理,使表面合金层获得马氏体基体上均匀分布的细小弥散碳化物组织,没有共晶莱氏体.经X射线衍射分析,渗层碳化物类型为M23C6,M6C和M2C,尺寸小于5μm.表面硬度达到1100HV.将等离子复合渗镀合成氮化钛试样与双层辉光离子渗铬试样,在10%硫酸、5%的盐酸、3.5%NaCl水溶液和H2S富液(含H2S 5~8g/L,NH3·H2O20g/L)中,进行电化学腐蚀实验.结果表明,渗镀试样比铬钼共渗试样耐蚀性能分别提高了84,11.67,1.15,21.15倍.  相似文献   

16.
目前,对AISI 316奥氏体不锈钢单一面心结构γΝ相改性层耐磨抗蚀性能的报道差异较大,有些甚至相互矛盾。采用等离子体源渗氮技术,于450℃,6 h改性AISI 316奥氏体不锈钢,获得了厚度约为17μm、峰值氮浓度20%(原子分数)、最大显微硬度1 510 HV0.1 N、单一面心结构的γΝ相改性层。分别采用WTM-2E球盘式磨损仪和PARSTAT2273电化学工作站,研究了干摩擦条件下γN相/Si_3N_4陶瓷球的摩擦磨损行为和在3.5%NaCl溶液中的电化学腐蚀行为,揭示了γN相改性层的耐磨抗蚀机理。结果表明:γΝ相改性层的磨损机制由原不锈钢的黏着磨损转变为氧化磨损,摩擦系数由0.88降低至0.65,磨损体积由0.13 mm~3降低到9.50×10-3mm~3,耐磨性能显著提高;γΝ相改性层阳极极化曲线未发生点蚀击穿过程,容抗弧直径增大,相位角平台变宽;采用等效电路Rs-(Rct//CPE)拟合的电荷转移电阻Rct由原不锈钢的1.006×105Ω·cm~2增至1.377×106Ω·cm~2,计算的双电层电容Cdl由88.4m F/cm~2降低至77.8 m F/cm~2,抗蚀性能明显得到了改善。  相似文献   

17.
为了提高高镍铬含量不锈钢的抗渗碳性,探索了奥氏体不锈钢表面的渗硅效果.通过扩散处理,在304奥氏体不锈钢表面获得了结构致密的渗硅层.应用SEM电镜和EDS能谱分析、显微硬度测定等方法观察了渗硅层的微观结构及其性能.结果表明,渗硅层厚度达50μm以上,为典型的柱状晶结构;渗层晶粒中由里到外的硅浓度分布区间为12.24%~20.93%;相应的微观组织的细密程度由表及里呈梯度分布,与基体结合处呈纳米晶结构;显微硬度由里到外在406~477 HV1N.缺口断裂法试验结果表明,渗硅层与钢基体结合十分良好.  相似文献   

18.
用固体粉末法,在4Cr10Si2Mo马氏体气阀钢表面制备了Al—Cr二元渗层及Al—Cr—Ce三元渗层,研究了渗层的显微组织和成分分布,测定了渗层由表及里的显微硬度。Al—Cr渗层厚度约为3501μm,硬度为580Hv;Al-Cr—Ce渗层厚度约为420μm,硬度为500Hv。  相似文献   

19.
王彬  薛文斌  金小越 《材料工程》2014,(6):28-34,39
采用液相等离子体电解渗方法对Q235低碳钢进行硼碳共渗(PEB/C)处理,研究了Q235低碳钢表面硼碳共渗层的形貌、结构和显微硬度。评估了PEB/C处理前后Q235钢的电化学腐蚀性能,以及以GCr15钢球作为摩擦副在不同载荷条件下PEB/C渗层的摩擦磨损特性。结果表明,经过PEB/C处理后(330V/30min),形成厚度约为20μm并主要由Fe2B相组成的渗硼层。PEB/C处理轻微提高了Q235钢的耐腐蚀性能,但明显降低了Q235低碳钢与GCr15钢球对磨的摩擦因数和磨损率。当载荷为5N时,PEB/C样品的摩擦因数和磨损率分别是Q235钢基体的1/4和1/59。  相似文献   

20.
吴凯峰 《材料保护》2005,38(12):73-73
该技术利用低真空中稀薄气体辉光放电产生的离子轰击钛合金表面,使工件加热到所需温度,对钛合金进行时效。同时表面渗入合金元素后,在整体时效强化的同时,可获得表面耐磨层,从而延长钛合金工件寿命。渗层厚度:50—200μm;渗层硬度:400~800HV。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号