首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
This work investigated geopolymeric lightweight concretes based on binders composed of metakaolin with 0% and 25% fly ash, activated with 15.2% of Na2O using sodium silicate of modulus SiO2/Na2O = 1.2. Concretes of densities of 1200, 900 and 600 kg/m3 were obtained by aeration by adding aluminium powder, in some formulations lightweight aggregate of blast furnace slag was added at a ratio binder:aggregate 1:1; curing was carried out at 20 and 75 °C. The compressive and flexural strength development was monitored for up to 180 days. The strength diminished with the reduction of the density and high temperature curing accelerated strength development. The use of the slag had a positive effect on strength for 1200 kg/m3 concretes; reducing the amount of binder used. The thermal conductivity diminished from 1.65 to 0.47 W/mK for densities from 1800 to 600 kg/m3. The microstructures revealed dense cementitious matrices conformed of reaction products and unreacted metakaolin and fly ash. Energy dispersive spectroscopy and X-ray diffraction showed the formation of amorphous silicoaluminate reaction products.  相似文献   

2.
The aim of the present study was to investigate the use of porphyrite in the production of Portland cement. Natural and thermally activated porphyrites were used as a clay raw material and an activator, respectively, at 0, 10, 20, 30, 40 and 50 wt% in order to assess their effects on the cement properties. According to the test results, the compressive strength of the specimens decreased with increasing natural porphyrite content in various curing periods. However, the compressive strength of cement produced with 10 wt% porphyrite (activator) activated at 650 °C for 30 min showed a higher value (56 MPa in TPC-6) than cement without activator (51 MPa in RPC-2). Due to thermal activation, porphyrite activator containing a glass phase possesses an enhanced reactivity during clinker hydration that intensifies the synthesis of hydrosilicates and improves compressive strength accordingly. The X-ray diffraction analysis confirmed an intensive formation of Portland cement minerals such as C3S, β-C2S, C3A and C4AF. The addition of thermally activated porphyrite has also led to an improvement of the rheological behavior, stability to expansion, increase in setting time and decrease in specific surface area of cement. As prepared cement composites and concretes with improved properties meet the requirements of State Standards 310-86 and 10181-81 for Portland cement and concrete, respectively. The findings in this report indicate that porphyrite can be utilized both as a raw material and an activator in the production of cement.  相似文献   

3.
Fly-ash and scrubber-ash are byproducts of municipal solid waste incinerators (MSWIs) that require further treatment before disposal to avoid polluting soil and groundwater with heavy metals. Recycling scrubber-ash is not feasible because it is extremely difficult to melt this material. In this study, fly-ash and scrubber-ash from MSWI were pre-mixed, then added to fly-ash from foundry sand and vitrified into slag by melting. The amount of that the latter was adjusted to maintain a basicity (CaO/SiO2) of 1.1. Slag-blended cement mortar (SCM) specimens were molded with 0–40 wt.% cement replaced by slag powder. Toxicity characteristic leaching procedure (TCLP) tests and compressive strength tests were performed. TCLP test results revealed that the concentrations of leached heavy metals were substantially below the regulatory thresholds. Compressive strengths of the SCM specimens were higher than those of the control group after curing for 7 days or longer. Those that had been cured for 28–90 days were about 124–148% stronger in compression than those in the control group. The Pozzolanic reaction accounts for the strengthening effect in the context of the added slag. It is thus feasible to simultaneously recycle MSWI fly-ash, scrubber-ash and fly-ash from foundry sand into useful resources.  相似文献   

4.
Blastfurnace slag has been widely used as a successful replacement material for Portland cement, and concrete of enhanced qualities can be achieved as a result. Due to the slag’s slow reactivity, however, the early-age mechanical properties may suffer. This paper reports the results of an investigation, carried out at Chlef University (Algeria), using Algerian slag, known to exhibit low reactivity due to its low CaO/SiO2 ratio. The slag was activated mechanically by grinding the slag to 250, 360 and 420 m2/kg Blaine surface area, thermally by curing mortar specimens at 20°, 40° and 60 °C, and chemically by mixing the slag with two alkalis, NaOH and KOH at different concentrations. Samples were tested for compressive strength at the ages of 1, 3, 7, 28 and 90 days. All three methods enhanced the reactivity of the slag. The results indicated that the slag is very sensitive to temperature rise. Increase in fineness resulted in increased strength development and the fineness of the slag must be greater than that of the cement to achieve better performance. Alkali activation of slag results in increased strength development but the strength was lower than that of the control mortar.  相似文献   

5.
With the aim of studying the influence of cement composition on resistance in high sulfates environment, standard mortars have been produced using ordinary Portland cement (CEM I – 32.5) and limestone cement with 35% limestone (CEM II/B-LL – 32.5). The pore size distribution of the cement pastes was measured. The mortars were immersed in a 5% Na2SO4 solution at 20 °C for 1.5 years and the caused deterioration was been visually observed at a regular basis. Furthermore, the mortars expansion was being estimated by measuring the change of length. At the end of the experiment the compressive strength of the mortars was measured. The deterioration products of the mortars have been identified by means of X-ray diffraction, optical microscopy and environmental scanning electron microscopy. The limestone cement based mortar presented cracking that started at the age of 6 months and continued throughout the experiment. It also displayed high expansion after 250 days of immersion in a 5% Na2SO4 caused, as proved using the analytical techniques, by the formation of gypsum and ettringite. Concluding, the cement with 35% limestone did not perform as well as ordinary Portland cement under the most aggressive laboratory conditions. Hence, it is obvious that the addition of limestone in the cement leads to a totally different behaviour than Portland cement with respect to the resistance in high sulfates environment.  相似文献   

6.
In this study, fly- and scrubber-ash from a municipal solid waste incinerator (MSWI) were mixed uniformly in their production weight proportions; then, the mixture was added to waste glass frit and melted to form a glassy slag. The toxicity characteristic leaching procedure test results for the glassy slag revealed that the amount of leached heavy metals was far below the regulatory threshold. The slag-blended cement concrete (SBCC) specimens were manufactured with 20 wt.% of the cement replaced by slag powder. Three water/cementitious ratios, 0.48, 0.58 and 0.68, were selected to mold the specimens for compressive strength testing. The strengths of the SBCC specimens were close to or higher than those of the ordinary Portland cement concrete (OPCC) specimens at an age of 28 days and were 5–10% higher than those of the OPCC specimens at ages of 56 and 90 days. The experimental results demonstrated the feasibility of recycling MSWI fly- and scrubber-ash with waste glass.  相似文献   

7.
The physical properties of concrete containing ground bagasse ash (BA) including compressive strength, water permeability, and heat evolution, were investigated. Bagasse ash from a sugar factory was ground using a ball mill until the particles retained on a No. 325 sieve were less than 5wt%. They were then used as a replacement for Type I Portland cement at 10, 20, and 30wt% of binder. The water to binder (W/B) ratio and binder content of the concrete were held constant at 0.50 and 350 kg/m3, respectively.The results showed that, at the age of 28 days, the concrete samples containing 10–30% ground bagasse ash by weight of binder had greater compressive strengths than the control concrete (concrete without ground bagasse ash), while the water permeability was lower than the control concrete. Concrete containing 20% ground bagasse ash had the highest compressive strength at 113% of the control concrete. The water permeability of concrete decreased as the fractional replacement of ground bagasse ash was increased. For the heat evolution, the maximum temperature rise of concrete containing ground bagasse ash was lower than the control concrete. It was also found that the maximum temperature rise of the concrete was reduced 13, 23, and 33% as compared with the control concrete when the cement was replaced by ground bagasse ash at 10, 20, and 30wt% of binder, respectively. The results indicate that ground bagasse ash can be used as a pozzolanic material in concrete with an acceptable strength, lower heat evolution, and reduced water permeability with respect to the control concrete.  相似文献   

8.
This experimental work has focused on studying the possibility of using dune sand powder (DSP) as a part mass addition to Portland cement. Studying the effect of addition dune sand powder on development of compressive strength and hydration with age of cement pastes as a function of water/binder ratio, was varied, on the one hand, the percentage of the dune sand powder (physico-chemical and chemical effect) and on the other, the fineness of dune sand powder (physical effect). In order to understand better the chemical effect (pozzolanic effect) of dune sand powder in cement pastes, we followed the mixtures hydration (50% pure lime + 50% DSP) by X-ray diffraction. These mixtures pastes present a hydraulic setting which is due to the formation of a C–S–H phase (calcium silicate hydrate). The latter is semi-crystallized. This study is a simplified approach to that of the mixtures (80% ordinary Portland cement + 20% DSP), in which the main reaction is the fixing of the lime coming from the cement hydration in the presence of the dune sand powder (pozzolanic reaction), to form calcium silicate hydrate C–S–H semi-crystallized of second generation. The results proved that up to 20% of dune sand powder as Portland cement replacement could be used with a fineness of 4000 cm2/g without affecting adversely the compressive strength. The dune sand powder, despite its crystalline nature, presents a partial pozzolanic reactivity.  相似文献   

9.
This paper presents the effect of palm oil fuel ash fineness on the microstructure of blended cement paste. Palm oil fuel ash (POFA) was ground to two different finenesses. Coarse and high fineness palm oil fuel ash, with median particle sizes of 15.6 and 2.1 μm, respectively, were used to replace ordinary Portland cement (OPC) at 0%, 20% and 40% by binder weight. A water to binder (W/B) ratio of 0.35 was used for all blended cement pastes. The amorphous ground palm oil fuel ash was characterized by the Rietveld method. The compressive strength, thermogravimetric analysis and pore size distribution of the blended cement pastes were investigated. The test results indicate that the ground palm oil fuel ash was an amorphous silica material. The compressive strengths of the blended cement pastes containing coarse POFA were as high as that of OPC cement paste. Blended cement paste with high fineness POFA had a higher compressive strength than that with coarse POFA. The blended cement pastes containing 20% of POFA with high fineness had the lowest total porosity. The Ca(OH)2 contents of blended cement paste containing POFA decreased with increasing replacement of POFA and were lower than those of the OPC cement paste. In addition, the POFA fineness had an effect on the reduction rate of Ca(OH)2. Furthermore, the critical pore size and average pore size of blended cement paste containing POFA were lower than those of the OPC cement paste. The incorporation of high fineness POFA decreased the critical pore size and the average pore size of blended cement paste as compared to that with coarse POFA.  相似文献   

10.
The immobilization of Ni(II) in various cement matrices was investigated using the solidification/stabilization (S/S) technique. The different cement pastes used in this study were neat Portland cement in absence and presence of water reducing- and water repelling-admixtures as well as blended cement with kaolin. Two ratios of Ni(II) were used (0.5% and 1.0% by weight of the solid binder). The hydration characteristics of the used cement pastes were tested via the determination of the combined water content, phase composition and compressive strength at different time intervals from 1 up to 180 days. The results show that the presence of NiCl2 caused retardation for the hydration of Portland cement paste in absence and presence of water-reducing agent. But NiCl2 caused acceleration rather than retardation on the hydration of the mixes containing calcium stearate and/or clay. The degree of immobilization of the added heavy metal ions was very high in the different investigated cement pastes.  相似文献   

11.
In this work, several nanomaterials have been used in cementitious matrices: multi wall carbon nanotubes (MWCNTs) and nano-clays. The physico-mechanical behavior of these nanomaterials and ordinary Portland cement (OPC) was studied. The nano-clay used in this investigation was nano-kaolin. The metakaolin was prepared by thermal activation of nano-kaolin clay at 750 °C for 2 h. The organic ammonium chloride was used to aid in the exfoliation of the clay platelets. The blended cement used in this investigation consists of ordinary Portland cement, carbon nanotubes and exfoliated nano metakaolin. The OPC was substituted by 6 wt.% of cement by nano metakaolin (NMK) and the carbon nanotube was added by ratios of 0.005, 0.02, 0.05 and 0.1 wt.% of cement. The blended cement: sand ratio used in this investigation was 1:2 wt.%. The blended cement mortar was prepared using water/binder ratio of 0.5 wt.% of cement. The fresh mortar pastes were first cured at 100% relative humidity for 24 h and then cured in water for 28 days. Compressive strength, phase composition and microstructure of blended cement were investigated. The results showed that, the replacement of OPC by 6 wt.% NMK increases the compressive strength of blended mortar by 18% compared to control mix and the combination of 6 wt.% NMK and 0.02 wt.% CNTs increased the compressive strength by 29% than control.  相似文献   

12.
In this research, a heavily contaminated humus-rich peat soil and a lightly contaminated humus-poor sand soil, extracted from a field location in the Netherlands, are immobilized. These two types of soil are very common in the Netherlands. The purpose is to develop financial feasible, good quality immobilisates, which can be produced on large scale.To this end, two binder combinations were examined, namely slag cement with quicklime and slag cement with hemi-hydrate. The mixes with hemi-hydrate proved to be better for the immobilization of humus rich soils, having a good early strength development. The heavily contaminated soil with 19% humus (of dm) could not be immobilized using 398 kg slag cement and 33 kg quicklime per m3 concrete mix (binder = 38.4% dm soil). It is possible to immobilize this soil using 480 kg binder (432 kg slag cement, 48 kg quicklime) per m3 of mix (58.2% dm). An alternative to the addition of extra binder (slag cement with quicklime) is mixing the soil with sand containing particles in the range of 0–2 mm. This not only improved the compressive strength of the immobilisates, but also reduced the capillary absorption. All the mixes with the lightly contaminated soil were cost-effective and suitable for production of immobilisates on a large scale. These mixes had good workability, a good compressive strength and a low capillary absorption. The leaching of all mixes was found to be much lower than allowed by the regulations. Given these results, the final mixes in the main experiment fulfilled all the financial and technical objectives.  相似文献   

13.
This paper presents experimentally investigated the effects of pozzolan made from various by-product materials on mechanical properties of high-strength concrete. Ground pulverized coal combustion fly ash (FA), ground fluidized bed combustion fly ash (FB), ground rice husk–bark ash (RHBA), and ground palm oil fuel ash (POFA) having median particle sizes less than 11 μm were used to partially replace Portland cement type I to cast high-strength concrete. The results suggest that concretes containing FA, FB, RHBA, and POFA can be used as pozzolanic materials in making high-strength concrete with 28-day compressive strengths higher than 80 MPa. After 7 days of curing, the concretes containing 10–40% FA or FB and 10–30% RHBA or POFA exhibited higher compressive strengths than that of the control concrete (CT). The use of FA, FB, RHBA, and POFA to partially replace Portland cement type I has no significant effect on the splitting tensile strength and modulus of elasticity as compared to control concrete or silica fume concretes. This results suggest that the by-products from industries can be used to substitute Portland cement to produce high-strength concrete without alteration the mechanical properties of concrete.  相似文献   

14.
Use of binary and ternary blends in high strength concrete   总被引:1,自引:0,他引:1  
Combinations of cement additions may provide more benefits for concrete than a single one. In this study, 80 high strength concretes containing several types and amounts of additions were produced. In the first stage, silica fume contents in binary blends that give the highest strengths were determined for different binder contents. In the second stage, a third binder (Class F or Class C fly ash or ground granulated blast furnace slag) was introduced to the concretes already containing Portland cement and silica fume in the amounts found in the first stage. Results indicated that ternary blends almost always made it possible to obtain higher strengths than Portland cement + silica fume binary mixtures provided that the replacement level by the additions was chosen properly. Moreover, the performance of slag in the ternary blends was better than Class F fly ash but worse than Class C fly ash.  相似文献   

15.
The development of new binders, as an alternative to traditional cement, by the alkaline activation of industrial by-products (i.e. ground granulated slag and fly ash) is an ongoing research topic in the scientific community [Puertas F, Amat T, Jimenez AF, Vazquez T. Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cem Concr Res 2003;33(12): 2031–6]. The aim of this study was to investigate the feasibility of using and alkaline activated ground Turkish slag to produce a mortar without Portland cement (PC).Following the characterization of the slag, mortar specimens made with alkali-activated slag were prepared. Three different activators were used: liquid sodium silicate (LSS), sodium hydroxide (SH) and sodium carbonate (SC) at different sodium concentrations. Compressive and flexural tensile strength of alkali-activated slag mortar was measured at 7-days, 28-days and 3-months. Drying shrinkage of the mortar was measured up to 6-months. Setting times of the alkali-activated slag paste and PC paste were also measured.Setting times of LSS and SH activated slag pastes were found to be much slower than the setting time of PC paste. However, slag paste activated with SC showed similar setting properties to PC paste.LSS, SH and SC activated slag mortar developed 81, 29, and 36 MPa maximum compressive strengths, and 6.8, 3.8, and 5.3 MPa maximum flexural tensile strengths at 28-days. PC mortar developed 33 MPa compressive strength and 5.2 MPa flexural tensile strength. LSS and SH activated slag mortars were found to be more brittle than SC activated slag and PC mortars.Slag mortar made with LSS had a high drying shrinkage, up to six times that of PC mortar. Similarly, slag mortar made with SH had a shrinkage up to three times that of PC mortar. However, SC activated slag mortar had a lower or comparable shrinkage to PC mortar. Therefore, the use of SC as an activator for slag mortar is recommended, since it results in adequate strength, similar setting times to PC mortar and comparable or lower shrinkage.  相似文献   

16.
Four limestone-based, alkali-activated slag fine aggregate concretes, two of which contained amorphous silica in the form of diatomaceous earth, were fabricated using different activating solutions (NaOH/waterglass or Na2CO3). Emphasis in this work was placed on using simple manufacturing methods and widely available materials, to ensure that these formulae are practical as construction materials in the developing world. Although cured only at room temperature, these fine aggregate concretes have good compressive strengths (~45 MPa) and their tensile strengths increased from ~2.6 MPa after 1 day of curing to ~4 MPa after 28 day for the NaOH-activated formulae. Samples activated with Na2CO3 had negligible tensile strengths after 1 day, increasing to ~2.5 MPa after 28 day. The main cementing phase was shown to be calcium–silicate–hydrates in all formulae; those activated with Na2CO3 also showed the presence of hydrotalcite. No evidence of geopolymeric phases was found, though incorporation of Na to form N–S–H that balance charges arising from Al substitution of Si in C–S–H is likely. Despite the short (~120 s) pot life of the strongest formula, NaCl was shown to be an effective retarding agent, which reduced the strengths of different formulae, at worst, by less than 25% after 28 day of curing.  相似文献   

17.
The effect of various additives (Ca(OH)2, K2SO4, Na2SO4, Al2(SO4)3) was evaluated on the hydraulic character and stability of pastes of 50–75% Fluorgypsum, 15–30% Portland cement and 10–20% Blast furnace slag. Characterization included length changes, compressive strength, SEM, DTA and XRD. The combination of Na2SO4 and Al2(SO4)3 favored early strength but caused detrimental expansion and strength losses after 90 days; whereas the use of only K2SO4 was favorable for strength and dimensional stability. The type of additive had a more important effect on stability and strength than the amounts of cement and slag. XRD indicated the presence of anhydrite, gypsum, ettringite, CaCO3 and an unidentified phase, the interaction of these is proposed to explain the behavior of the cements investigated. SEM showed that cement and slag reacted forming C–S–H that enhanced the hydraulic character by engulfing the gypsum crystals.  相似文献   

18.
The objective of this study is to investigate the use of ground palm oil fuel ash with high fineness (GPA) as a pozzolanic material to produce high-strength concrete. Samples were made by replacing Type I Portland cement with various proportions of GPA. Properties such as the compressive strength, drying shrinkage, water permeability, and sulfate resistance, were then investigated. After aging for 28 days, the compressive strengths of these concrete samples were found to be in the range of 59.5–64.3 MPa. At 90-day the compressive strength of concrete containing GPA 20% was as high as 70 MPa. The drying shrinkage and water permeability were lower than those of high-strength concrete made from Type I Portland cement. When the concrete samples were immersed in a 10% MgSO4 solution for 180 days, the sulfate resistance in terms of the expansion and loss of compressive strength was improved. The results indicated that GPA is a reactive pozzolanic material and can be used as a supplementary cementitious material for producing high-strength concrete.  相似文献   

19.
Self-compacting concretes (SCCs) have brought a promising insight into the concrete industry to provide environmental impact and cost reduction. However, the use of ternary and especially quaternary cementitious blends of mineral admixtures have not found sufficient applications in the production of SCCs. For this purpose, an experimental study was conducted to investigate properties of SCCs with mineral admixtures. Moreover, durability based multi-objective optimization of the mixtures were performed to achieve an optimal concrete mixture proportioning. A total of 22 concrete mixtures were designed having a constant water/binder ratio of 0.44 and a total binder content of 450 kg/m3. The control mixture included only a Portland cement (PC) as the binder while the remaining mixtures incorporated binary, ternary, and quaternary cementitious blends of PC, fly ash (FA), ground granulated blast furnace slag (S), and silica fume (SF). Fresh properties of the SCCs were tested for slump flow diameter, slump flow time, L-box height ratio, and V-funnel flow time. Furthermore, the hardened properties of the concretes were tested for sorptivity, water permeability, chloride permeability, electrical resistivity, drying shrinkage, compressive strength, and ultrasonic pulse velocity. The results indicated that when the durability properties of the concretes were taken into account, the ternary use of S and SF provided the best performance.  相似文献   

20.
The effect of Expandable Thermoplastic Microspheres (ETM) loading on the fracture resistance and indirect tensile strength of cement binders is studied. Portland white cement (PWC) was used as the matrix in the current study. Loadings of 0.1%, 0.35%, 0.5%, 0.75% and 1%, by weight, of ETM were added to the dry cement. Semi-circular bend specimens, 152 mm in diameter and 27 mm thickness with different notch depths were fabricated to study the crack resistance of the compounds, Jc. For the indirect tensile tests, circular specimens, 50 mm in diameter and 12.7 mm thickness were used. All specimens were left to cure under water for 7 days. A 2.5-fold increase in the indirect tensile strength was achieved at an ETM loading of 0.35% by weight. A nearly threefold increase in the fracture resistance occurred at the 0.1% ETM loading. The thermal resistivity of the compounds increased by 30% for a 1% Expancel loading. Fracture surface examination revealed that the ETM facilitated the permeation of water by creating pores. Thus, an optimum strength and fracture resistance was achieved between 0.1% and 0.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号