首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of different environmental conditions on the creep behavior of concrete beams reinforced with glass fiber reinforced polymer (GFRP) bars under sustained loads is investigated. This is achieved through testing concrete beams reinforced with GFRP bars and subjected to a stress level of about 20–25% of the ultimate stress of the GFRP bars. Reference beams were loaded in the temperature-controlled laboratory (24 ± 3 °C). Other test beams were either completely or partially immersed in different environments (tap-water and sea-water) at elevated temperature (40 ± 2 °C) to accelerate the reaction. During the exposure period, which lasted for ten months, strains in concrete and GFRP bars as well as the midspan deflections were recorded for all considered environmental conditions. The results show that the creep effect due to sustained loads was significant for all environments considered in the study and the highest effect was on beams subjected to wet/dry cycles of sea-water at 40 ± 2 °C.  相似文献   

2.
Glass fibre-reinforced polymer (GFRP) tubes are compared to steel spiral reinforcement in circular concrete members with longitudinal reinforcement and prestressing, using six beam tests. Two 324 mm diameter and 4.2 m long prestressed specimens were tested in bending. Four 219 mm diameter reinforced specimens were also tested, including two 2.43 m long beams tested in bending and two 0.6 m long beams tested in shear. In each set, one specimen was essentially a concrete-filled GFRP tube, while the other control specimen included steel spiral reinforcement of comparable hoop stiffness to that of GFRP tube. The strength of control specimens was governed by crushing and spalling of concrete cover. Unlike spiral reinforcement, GFRP tubes confined larger concrete areas and also contributed as longitudinal reinforcement, leading to increases in flexural and shear strengths, up to 113% and 69%, respectively.  相似文献   

3.
Ground penetrating radar (GPR) is currently one of the most efficient sensors used for the detection of dielectric cylindrical objects buried under concrete. Physical and theoretical modeling and experimental results of buried reinforcing steel bar (rebar) are given and studied using measurements of radargram data. This allows for reinforcing steel of radii (1.6 cm, 1 cm) to be detected and estimated from the radargrams. A physical model is presented for the electromagnetic signature of a buried reinforcing steel bar, which takes into account the radius of the rebar. This is achieved by subjecting GPR radargrams to a series of digital image processing stages, followed by different power reflectivity within the energy zone during the motion of the GPR antenna along the reinforced concrete surface. Power reflectivity for vertically oriented migration traces was generated. The distance between variant power reflectivity and the long dimension radius of an energy footprint can be considered when calculating the radius of reinforcing steel bar. The results indicate that, this model is capable of estimating the reinforcing steel bar radius to within 7%.  相似文献   

4.
Sixteen under-reinforced high strength concrete one-way slabs were cast, heated at 600 °C for 2 h, repaired, and then tested under four-point loading to investigate the coupling effect of water recuring and repairing with advance composite materials on increasing the flexural capacity of heat-damaged slabs. The composites used included high strength fiber reinforced concrete layers; and carbon and glass fiber reinforced polymer (CFRP and GFRP) sheets. Upon heating then cooling, the reinforced concrete (RC) slabs experienced extensive map cracking, and upward cambering without spalling. Recuring the heat-damaged slabs for 28 days allowed recovering the original stiffness without achieving the original load carrying capacity. Other slabs, recured then repaired with steel fiber reinforced concrete (SFRC) layers, regained from 79% to 84% of the original load capacity with a corresponding increase in stiffness from 382% to 503%, whereas those recured then repaired with CFRP and GFRP sheets, regained up to 158% and 125% of the original load capacity with a corresponding increase in stiffness of up to 319% and 197%, respectively. Control, heat-damaged, and water recured slabs showed a typical flexural failure mode with very fine and well distributed hairline cracks, propagated from the repair layers to concrete compression zone. RC slabs repaired with SFRC layers failed in flexural through a single crack, propagated throughout the compression zone, whereas those repaired with CFRP and GFRP experience yielding failure of steel prior to the composites failure.  相似文献   

5.
This paper deals with the combination of radar technology and artificial neural networks (ANN) for the non-destructive evaluation of the water and chloride contents of concrete. Two networks were trained and tested to predict these concrete properties. Input data to the statistical models were extracted from time-domain signals of direct and reflected radar waves. ANN training and testing were implemented according to an experimental database of 100 radar measurements performed on concrete slabs having various water and chloride contents. Both networks were multi-layer-perceptrons trained according to back-propagation algorithm.The results of this research highlight the potential of artificial neural networks for solving the inverse problem of concrete physical evaluation using radar measurements. It was found that the optimized statistical models predicted water and chloride contents of concrete laboratory slabs with maximum absolute errors of about 2% and 0.5 kg/m3 of concrete, respectively.  相似文献   

6.
Eighty pull-out specimens were used to study the effect of temperature ranging from 20 °C to 80 °C in dry environment on bond properties between Glass Fiber Reinforced Polymer (GFRP) bars and concrete. The pullout-test specimens were subjected during 4 and 8 months to high temperatures up to 80 °C and then compared to untreated specimens (20 °C). Experimental results showed no significant reduction on bond strength for temperatures up to 60 °C. However, a maximum of 14% reduction of the bond strength was observed for 80 °C temperature after 8 months of thermal loading. For treated specimens, the coefficient β in the CMR model, which predicts the bond–stress–displacement behavior, seems to be dependant with the temperature.  相似文献   

7.
The experimental studies on the behaviour of recycled aggregate concrete-filled steel tube (RACFST) stub columns after exposed to high temperatures are reported in this paper. Forty specimens, including 32 RACFST stub columns and 8 normal concrete-filled steel tube (CFST) stub columns as reference, were tested, and the failure pattern, load versus strain relation and ultimate strength of the specimens were presented and analysed. Five types of concrete were produced: one reference concrete with natural aggregates, two concrete mixes with recycled coarse aggregate (RCA) replacement ratios of 50% and 100%, and two concrete mixes with recycled fine aggregate (RFA) replacement ratios of 50% and 100%. The specimens were exposed to 300 °C, 600 °C and 800 °C for 3 h. The test results showed that, due to the existence of the recycled aggregates, the post-fire performance of RACFST stub columns was lower than the corresponding normal CFST specimens under the same maximum temperature suffered, and the RACFST specimens with RCA had a better behaviour than those with RFA under the same recycled aggregate replacement ratio.  相似文献   

8.
This paper presents an experimental study investigating the behavior of FRP-reinforced concrete bridge deck slabs under concentrated loads. A total of eight full-scale deck slabs measuring 3000-mm long by 2500-mm wide were constructed. The test parameters were: (i) slab thickness (200, 175 and 150 mm); (ii) concrete compressive strength (35–65 MPa); (iii) bottom transverse reinforcement ratio (1.2–0.35%); and (iv) type of reinforcement (GFRP, CFRP, and steel). The slabs were supported on two parallel steel girders and were tested up to failure under monotonic single concentrated load acting on the center of each slab over a contact area of 600 × 250 mm to simulate the footprint of sustained truck wheel load (87.5 kN CL-625 truck). All deck slabs failed in punching shear. The punching capacity of the tested deck slabs ranged from 1.74 to 3.52 times the factored load (Pf) specified by the Canadian Highway Bridge Design Code (CHBDC) CAN/CSA S6-06. Besides, the ACI 440.1R-06 punching strength equation greatly underestimated the capacity of the tested slabs with an average experimental-to-predicted punching capacity ratio (Vexp/Vpred) of 3.17.  相似文献   

9.
The objective of the research was to examine the creep behavior of masonry walls strengthened with FRP composites compared to that of conventional reinforcement. Eight full-scale (40 in wide by 96 in tall [1.02 m × 2.44 m]) unreinforced concrete masonry walls were constructed for testing long-term deflections out-of-plane. The walls were strengthened with externally bonded CFRP or GFRP composites. Two additional walls were constructed with mild steel reinforcement grouted in the center cell of the specimens. Long-term deflections due to creep in FRP reinforced walls were shown to be ≈22–56% higher than those of steel reinforced walls.  相似文献   

10.
This paper presents the results of an experimental program to investigate the effect of high temperature on the performance of concrete externally confined with FRP sheets. For this purpose, a two-phase experimental program was conducted. In the first phase, 42 standard 100 × 200 mm concrete cylinders were prepared. Out of these specimens, 14 cylinders were left unwrapped; 14 specimens were wrapped with one layer of CFRP sheet; and the remaining 14 specimens were wrapped with one layer of GFRP sheet. Some of the unconfined and FRP-confined specimens were exposed to room temperature; whereas, other cylinders were exposed to heating regime of 100 °C and 200 °C for a period of 1, 2 or 3 h. After high temperature exposure, specimens were tested under uniaxial compression till failure. The test results demonstrated that at a temperature of 100 °C (a little more than the glass transition temperature (Tg) of the epoxy resin), both CFRP- and GFRP-wrapped specimens experienced small loss in strength resulting from melting of epoxy. This loss of strength was more pronounced when the temperature reached 200 °C. In the second phase of the experimental program, three 100 × 100 × 650 mm concrete prisms were prepared and then overlaid by one layer of CFRP and GFRP laminates for conducting pull-off strength tests as per ASTM D4541 – 09. The objective of this testing was to evaluate the degradation in bond strength between FRP and concrete substrate when exposed to elevated temperature environments. One prism was exposed to room temperature whereas the other two specimens were exposed to heating regime of 100 °C and 200 °C for a period of 3 h. It was concluded that a significant degradation in the bond strength occurred at a temperature of 200 °C especially for CFRP-overlaid specimens.  相似文献   

11.
A comprehensive laboratory experiments were conducted to improve the mechanical properties of glass fibre reinforced plastic (GRP) waste powder filled concrete using superplasticiser for widening the scope for GRP waste recycling for different applications. It is imperative to note that the 28 days mean compressive strength of concrete specimens developed with 5–15% GRP waste powder using 2% superplasticiser resulted 70.25 ± 1.43–65.21 ± 0.6 N/mm2 which is about 45% higher than that of without the addition of superplasticiser (with GRP waste) and about 11% higher than that of the control concrete (without GRP waste) with 2% superplasticiser. The tensile splitting strength of the concrete showed 4.12 ± 0.05–4.22 ± 0.03 N/mm2 with 5–15% GRP waste powder which is also higher than that of the control concrete (3.85 ± 0.02 N/mm2). The drying shrinkage, initial surface absorption and density of GRP waste filled concrete were evaluated and found better than the desirable quality for use in structural and non-structural applications.  相似文献   

12.
Permeability is one of the most important parameters to quantify the durability of high-performance concrete. Permeability is closely related with the spalling phenomenon in concrete at elevated temperature. This parameter is commonly measured on non-thermally damaged specimens. This paper presents the results of an experimental investigation carried out to study the effect of elevated temperature on the permeability of high-performance concrete. For this purpose, three types of concrete mixtures were prepared: (i) control high-performance concrete; (ii) high-performance concrete incorporating polypropylene fibres; and (iii) high-performance concrete made with lightweight aggregates. A heating–cooling cycle was applied on 160 × 320 mm, 110 × 220 mm, and 150 × 300 mm cylindrical specimens. The maximum test temperature was kept as either 200 or 600 °C. After the thermal treatment, 65 mm thick slices were cut from each cylinder and dried prior to being subjected to permeability test. Results of thermal gradients in the concrete specimens during the heating–cooling cycles, compressive strength, and splitting tensile strength of concrete mixtures are also presented here. A relationship between the thermal damage indicators and permeability is presented.  相似文献   

13.
This paper presents a procedure that allows the construction of a simplified axial load – bending moment interaction diagram for FRP-wrapped Reinforced Concrete (RC) columns of circular and non-circular cross-sections for practical design applications. In the proposed methodology, the analysis of FRP-confined columns is carried out based on principles of equilibrium and strain compatibility equivalent to that of conventional RC columns, the primary difference being the use of the stress–strain model for FRP-confined concrete developed by Lam and Teng. Based on the consideration that the strength enhancement is of significance in members where compression is the controlling failure mode, only the portion of the interaction diagram corresponding to this type of failure is the focus of the methodology. Experimental evidence from RC specimens with a minimum side dimension of 300 mm (12 in.) and subjected to combined axial compression and flexure was collected and compared to the theoretical interaction diagrams. Even though limited experimentation has been conducted in the compression-controlled region for such type of members, data points appear to be consistent with the analytical predictions. A design method for RC members is therefore proposed following the principles of the ACI building code.  相似文献   

14.
In this paper, applicability of previously published empirical relations among compressive strength, splitting tensile strength and flexural strength of normal concrete, polypropylene fiber reinforced concrete (PFRC) and glass fiber reinforced concrete (GFRC) to steel fiber reinforced concrete (SFRC) was evaluated; moreover, correlations among these mechanical properties of SFRC were analyzed. For the investigation, a large number of experimental data were collected from published literature, where water/binder ratio (w/b), steel fiber aspect ratio and volume fraction were reported in the general range of 0.25–0.5, 55–80 and 0.5–2.0%, respectively, and specimens were cylinders with size of Φ 150 × 300 mm and prisms with size of 150 × 150 × 500 mm. Results of evaluation on these published empirical relations indicate the inapplicability to SFRC, also confirm the necessity of determination on correlations among mechanical properties of SFRC. Through the regression analysis on the experimental data collected, power relations with coefficients of determination of 0.94 and 0.90 are obtained for SFRC between compressive strength and splitting tensile strength, and between splitting tensile strength and flexural strength, respectively.  相似文献   

15.
Pop-out and disaggregation of aggregate in a 1-year old cement concrete pavement originally mixed with air-entraining (AE) water-reducing agent was observed after the pavement had been exposed to ethylene glycol based snow-melting agent on the surface in the winter. The study used: gas chromatography–mass spectrometry (GC–MS) tests, 1H Nuclear Magnetic Resonance (NMR) tests, X-ray fluorescence analysis, emission spectral analysis (ICP), elution tests in anion type surfactant solution conducted for mortar and aggregate taken from the cement concrete where pop-out had occurred, as well as samples made by cement paste in the laboratory. Tests of the tensile strength, thermal-stress, and three-dimensional crack analysis by micro-focus computerized tomography (CT) scanner were conducted for specimens (2.5 × 2.5 × 10 cm) taken from the cement concrete where pop-out had occurred and with cement concrete samples made in the laboratory. Microscope observations and Electron Probe Micro Analyzer (EPMA) analysis were conducted for thin samples (2.5 × 2.5 cm and 20 μm thick) taken from the cement concrete where pop-out had occurred. The tests results showed that organic compounds contained in the cement reacted with the cement during the hardening process, generating cracks and gel in the cement paste. It was established that these caused the pop-out of the aggregate, together with the effects of the ethylene glycol based snow-melting agent that the cement concrete had been exposed to. No pop-out or disaggregation of aggregate were found in cement concrete at a repaired section, at the same location, with aggregate of low absorbing water ratio in this cold region and in place for 2 years.  相似文献   

16.
This paper describes 24 tests conducted on slender circular tubular columns filled with normal, high, and ultra-high strength concrete for plain, bar reinforced and steel fiber reinforced columns. These were reinforced and subjected to both concentric and eccentric axial load. It is a continuation of a previous research paper (Portoles et al., 2011 [1]), which presented test results on eccentrically loaded plain concrete columns. The test parameters are nominal strength of concrete (30, 90 and 130 MPa), eccentricity e (0, 20 and 50 mm) and type of reinforcement. A comparison with the corresponding empty tubular columns is performed, as the aim of the paper is to analyze the influence of each type of infill and establish the best option for practical application. For the limited cases analyzed the results show that the addition of high or ultra-high strength infill is more useful for concentric loaded cases than for eccentric loaded ones, where it seems that the best design option is the utilization of bar reinforced concrete filling rather than steel fiber to reinforce CFST columns. The experimental ultimate load of each test was compared with the design loads from Eurocode 4, accurate for the eccentrically loaded tests.  相似文献   

17.
This paper describes effect of blast produced ground vibration on damage potential to residential structures to determine safe levels of ground vibration for the residential structures and other buildings in mining areas. Impacts of 341 blasts detonated at two mines were monitored at the test structures and 1871 blast vibrations signatures were recorded on or near the test structures. Cosmetic cracks in a native brick-mud-cement house were detected at peak particle velocities (PPV) between 51.6 and 56.3 mm/s. The reinforced concrete and cement mortar (RCC) structure experienced cosmetic cracks at PPVs of 68.6–71.3 mm/s at the first floor, whereas at second floor it was detected at PPV levels of 71.2–72.2 mm/s. Minor damage in brick-mud-cement house was recorded at PPV levels of 81.0–89.7 mm/s. The RCC structure at first and second floors experienced minor damage at PPV levels of 104 and 98.3–118 mm/s, respectively. The brick-mud-cement house experienced major damage at PPV level of 99.6–113.0 mm/s, while major damage was recorded in RCC structure on first floor at PPV of 122 mm/s, the second floor at PPV levels of 128.9–161 mm/s. Recommended threshold limits of vibrations for the different type of structures is based on these measurements and observations.  相似文献   

18.
C20 and C30 classes of concrete are produced each with addition of Dramix RC-80/0.60-BN type of steel fibers (SFs) at dosages of 0, 30, 60 kg/m3, and their compressive strengths, split tensile strength, moduli of elasticity and toughnesses are measured. Nine reinforced concrete (RC) beams of 300 × 300 × 2000 mm outer dimensions, designed as tension failure and all having the same steel reinforcement, having SFs at dosages of 0, 30, 60 kg/m3 with C20 class concrete, and nine other RC beams of the same peculiarities with C30 class concrete again designed as tension failure and all having the same reinforcement are produced and tested under simple bending. The load versus mid-span deflection relationships of all these RC and steel-fiber-added RC (SFARC) beams under simple bending are recorded. First, the mechanical properties of C20 and C30 classes of concrete with no SFs and with SFs at dosages of 30 and 60 kg/m3 are determined in a comparative way. The flexural behaviours and toughnesses of RC and SFARC beams for C20 and C30 classes of concrete are also determined in a comparative way. The experimentally determined (mid-section load)–(SFs dosage) and (toughness)–(SFs dosage) relationships are given to reveal the quantitative effects of concrete class and SFs dosage on these crucial properties.  相似文献   

19.
《Building and Environment》2005,40(11):1492-1504
The Taguchi method was used to determine optimum conditions for tire rubber in asphalt concrete with Marshall Test. The tire rubber in asphalt concrete was explored under different experimental parameters including tire rubber gradation (sieve #10–40), mixing temperature (155–175 °C), aggregate gradation (grad. 1–3), tire rubber ratio (0–10% by weight of asphalt), binder ratio (4–7% by weight of asphalt), compaction temperature (110–135 °C), and mixing time (5–30 min). The optimum conditions were obtained for tire rubber gradation (sieve #40), mixing temperature (155 °C), aggregate gradation (grad. 1), tire rubber ratio (10%), binder ratio (5.5%), compaction temperature (135 °C), mixing time (15 min).  相似文献   

20.
An experimental study was conducted to evaluate the effect of concrete aggregate gradation, water–cement ratio, and curing time on measured ultrasonic wave velocity (UPV). 30 × 30 × 10 cm Portland cement concrete slabs were cast for ultrasonic evaluation, while 10 cm diameter by 20 cm height cylinders were cast for compressive strength evaluation The slabs and cylinders were prepared using Portland cement and limestone aggregate. Two slabs were cast from each combination of coarse aggregate gradations and water cement ratio (0.40, 0.45, 0.50, and 0.55). Four ASTM gradations were considered, ASTM No: 8, 67, 56, and 4. These gradations have nominal maximum aggregate size 25, 4.75, 19.3, and 12.5 mm, respectively.The ultrasonic equipment used in this study was the portable ultrasonic non-destructive digital indicating tester (PUNDIT) with a generator having an amplitude of 500 V producing 54 kHz waves. The time needed to transfer the signal between the transducers was recorded and used to calculate the signal velocity, which was used as a parameter in the evaluation. Ultrasonic measurements were performed at 3, 7, 28, and 90 days after concrete casting.The results of the analysis indicated that water–cement ratio was found to have a significant effect on UPV. The UPV was found to decrease with the increase of water cement ratio. Aggregate gradation was also found to have significant effect on UPV. In general, the larger the aggregate size used in preparing Portland cement concrete, the higher the measured velocity of ultrasonic waves. Also, UPV was found to be increased as concrete curing time increased. Concrete compressive strength was found to be significantly affected by water–cement ratio and coarse aggregate gradation. Lower water–cement ratio produced higher concrete strength. Also, the concrete compressive strength increased as maximum aggregate size decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号