共查询到20条相似文献,搜索用时 15 毫秒
1.
A recent and promising method for shear strengthening of reinforced concrete (RC) members is the use of near-surface mounted (NSM) fiber-reinforced polymer (FRP) reinforcement. In the NSM method, the reinforcement is embedded in grooves cut onto the surface of the member to be strengthened and filled with an appropriate binding agent such as epoxy paste or cement grout. Only a few studies have been conducted to date on the use of NSM FRP reinforcement for shear strengthening of RC beams. These studies identified some critical failure modes related to debonding between the NSM reinforcement and the concrete substrate. However, more tests need to be conducted to identify all possible failure modes of strengthened beams. Moreover, virtually no test results are available on the behavior of shear-strengthened beams containing steel shear reinforcement, and on the effect of variables such as the type of epoxy used as groove filler. This paper illustrates a research program on shear strengthening of RC beams with NSM reinforcement, aimed at gaining more test results to fill the gaps in knowledge mentioned above. A number of beams were tested to analyze the influence on the structural behavior and failure mode of selected test parameters, i.e. type of NSM reinforcement (round bars and strips), spacing and inclination of the NSM reinforcement, and mechanical properties of the groove-filling epoxy. One beam strengthened in shear with externally bonded FRP laminates was also tested for comparison purposes. All beams had a limited amount of internal steel shear reinforcement to simulate a real strengthening situation. Test results are presented and discussed in the paper. 相似文献
2.
This paper presents a rational model to predict the ultimate load capacity of reinforced concrete (RC) beams strengthened by a combination of longitudinal and transverse fiber reinforced polymer (FRP) composite plates/sheets (flexure and shear strengthening system). The model is based on the truss analogy and the theory of plasticity and is opportunely refined in order to incorporate some critical aspects, such as variable angle crack, non-uniform FRP stress distribution over the shear crack, shear span/depth ratio. It is a general and unified model that allows consideration of all the main possible failure mechanisms of strengthened RC beams, related to flexural-shear interaction, shear web-crushing and pure flexural mechanisms. The model is validated against a large number of beam tests reported in the literature, involving a wide range of geometrical and mechanical characteristics. The numerical investigation shows a very satisfactory correlation between predicted and experimental data. 相似文献
3.
In the present paper we analyse the edge debonding failure of a beam strengthened by a fibre reinforced polymer. As well known from the literature, a stress concentration is found at the edge of the reinforcement which triggers the debonding of the fibre reinforced polymer strip when the load reaches a certain critical threshold. Two failure criteria are proposed to study the debonding mechanism. The former is a stress assessment criterion, i.e. failure takes place whenever the maximum shearing stress reaches a limit value (the interfacial bond strength). The latter is an energy, fracture mechanics criterion, i.e. failure takes place as the strain energy release rate reaches a critical value (the interfacial fracture energy). It is argued that the energy criterion is more effective to address the edge debonding failure mode. However, under the assumption of shear lag behaviour for the adhesive layer between the beam and the reinforcement, a general rule linking the two approaches is set, thus providing the key to bypass the rather complicated energetic analysis. The final part of the paper is devoted to the crack instabilities that may occur after the debonding initiates, i.e. snap–back and snap-through phenomena. The size effect is then investigated by means of a dimensional analysis and a simplified formula providing the critical load is proposed that could be useful in engineering practice. 相似文献
4.
Bo Wang J.G. Teng Laura De Lorenzis Li-Min Zhou Jinping Ou Wei Jin K.T. Lau 《Construction and Building Materials》2009,23(4):1698-1711
Fiber-reinforced polymer (FRP) bars can be used as internal reinforcement for new reinforced concrete (RC) structures and as near-surface mounted (NSM) reinforcement for the strengthening of RC structures. The NSM method is an emerging strengthening technique for RC structures, where FRP bars are embedded into grooves cut in the cover of RC members. In both cases, strain monitoring of the FRP bars is desirable either for the investigation of the structural behavior or for the long-term health monitoring of the structure. This paper presents a study in which fiber-optic sensors were embedded into glass FRP (GFRP) bars to produce smart GFRP bars for NSM applications. The manufacturing process of the smart FRP bars is illustrated and their performance in tensile, bond and beam flexural tests is examined to assess the effectiveness of these smart FRP bars for achieving the dual purpose of structural strengthening and strain monitoring. On the basis of the test results, the advantages and limitations of fiber-optic sensors compared to electrical strain gages in the strain monitoring of NSM FRP bars are discussed. The bond and beam test results also confirm the effectiveness of the NSM method for the strengthening of RC structures. 相似文献
5.
6.
Shear strengthening of Reinforced Concrete (RC) beams by means of Near Surface Mounted (NSM) Fiber Reinforced Polymer (FRP) strips is an emerging technique for structural rehabilitation that is gaining increasing interest in the FRP community, mainly because of some advantages it provides with respect to the better consolidated technique of the Externally Bonded Reinforcement (EBR). Those advantages mainly encompass a better exploitation of material and a higher protection against vandalism, along with a relative faster applicability. Yet, the behavior of such NSM FRP strips is extremely complex, as can be gathered by experimental evidence, due to the complex geometry, the nonlinear mechanical properties of bond, and the scatter affecting the concrete tensile properties, along with their nonlinearity. In an attempt to provide valuable contribution to a better understanding of their behavior, a three dimensional mechanical model for simulating the shear strength contribution provided by a system of NSM FRPs to a RC beam throughout the loading process is herein presented along with the main findings. It correctly interprets the experimental evidence, taking into account complex phenomena such as the interaction between bond transferred force and concrete fracture, along with the interaction between adjacent strips. 相似文献
7.
《Construction and Building Materials》2010,24(9):1547-1559
The present paper illustrates the results of an experimental program on Reinforced Concrete (RC) beams externally strengthened with carbon Fibre Reinforced Plastic (FRP) laminates and Near Surface Mounted (NSM) bars under monotonic and cyclic loads, the latter ones characterized by a low number of cycles in the elastic and post-elastic range. Comparisons between experimental and theoretical failure loads are discussed in detail. 相似文献
8.
《Construction and Building Materials》2003,17(1):27-41
Many studies have been undertaken on shear strengthening of reinforced concrete (RC) beams by externally bonding fibre-reinforced polymer (FRP) composites. These studies have established clearly that such strengthened beams fail in shear mainly in one of two modes: FRP rupture; and FRP debonding, and have led to preliminary design proposals. This paper is concerned with the development of a simple, accurate and rational design proposal for the shear capacity of FRP-strengthened beams which fail by FRP debonding. Existing strength proposals are reviewed and their deficiencies highlighted. A new strength model is then developed. The model is validated against experimental data collected from the existing literature. Finally, a new design proposal is presented. 相似文献
9.
《Construction and Building Materials》2010,24(10):1821-1829
Aging infrastructure worldwide has made rapid means of repair and retrofitting a growing necessity. Fiber reinforced polymers (FRP) can provide a cost-effective and accelerated repair technique with near surface mounting (NSM) of pre-cured bars or strips in a bed of epoxy placed in pre-cut grooves. The performance of NSM FRP reinforcement depends on both geometric and mechanical properties of the system. Within the scope of this study, an experimental program was carried out to identify the effects of groove size tolerance on NSM FRP systems. Test results showed that the groove size tolerance up to ±22% does not affect the overall performance of such systems. The findings were also verified with a finite element model, which was then extended to study the effects of other geometric and physical parameters. Finally, a comprehensive database of test results available in the literature was compiled, and a comparative study was conducted on the geometric and material properties of the NSM FRP systems. 相似文献
10.
The use of fibre reinforced polymer (FRP) externally bonded (EB) plates in the form of pultruded and wet lay-up plates is now generally accepted as an efficient and unobtrusive technique for retrofitting reinforced concrete structures and is applied worldwide. However, EB plates, and in particular EB pultruded plates, tend to debond at strains much lower than their fracture strains. An alternative technique of adhesively bonding pultruded plates or strips in narrow grooves sawn into the concrete cover, that is near surface mounted (NSM) plates or strips, is now gradually gaining acceptance as tests have shown that the debonding strains can be much higher than that for EB plates. However, tests have also shown that NSM plates can interact with adjacent parallel NSM plates to cause intermediate crack (IC) debonding of groups of NSM strips at reduced strengths. This paper develops a mathematical model for the IC debonding resistance of groups of NSM plates for use in the flexural and shear strengthening of reinforced concrete beams. 相似文献
11.
基于2根非加固木梁和4根纤维增强复合材料(Fiber Reinforced Polymer,FRP)加固梁的抗剪性能对比实验的研究,得出在实木梁端用FRP箍进行抗剪加固应当采用高弹性模量的CFRP的结论,并指出梁端CFRP箍可以有效的抑制剪切裂纹的扩展。 相似文献
12.
X.Z. Lu J.F. Chen L.P. Ye J.G. Teng J.M. Rotter 《Construction and Building Materials》2009,23(4):1544-1554
Reinforced concrete (RC) beams may be strengthened for shear with externally bonded fibre reinforced polymer (FRP) composites through complete wrapping, U-jacketing or bonding on their sides only. The two main shear failure modes of such strengthened beams are FRP rupture and debonding. In both modes of failure, the contribution of the bonded FRP reinforcement to the shear capacity of the beam depends strongly on the stress (or strain) distribution in the FRP at the ultimate limit state. This paper presents a numerical study of the FRP stress distribution at debonding failure in U-jacketed or side-bonded beams using a rigorous FRP-to-concrete bond–slip model and assuming several different crack width distributions. Numerical results indicate that Chen and Teng’s early simple assumption [Chen JF, Teng JG. Shear capacity of FRP-strengthened RC beams: FRP debonding. Constr Build Mater 2003;17:27–41] for the stress distribution in the FRP results in satisfactory predictions for the effective FRP stress in most cases for both U-jacketed and side-bonded beams. However, it may become unconservative for side-bonded beams that have only light flexural steel reinforcement. 相似文献
13.
E. Ferrier D. Bigaud J.C. Clément P. Hamelin 《Construction and Building Materials》2011,25(2):539-546
External bonding of fiber-reinforced polymers (FRP) on concrete beams is particularly attractive for the strengthening of civil engineering structures in order to increase their strength and stiffness. Principles for design of such strengthening methods are now established and many guidelines exist. However, fatigue design procedure is still an ongoing research topic.This paper focuses on the damage behavior of FRP-strengthened reinforced concrete (RC) structures subjected to fatigue loading.In order to design bonded reinforcements, an iterative computational method based on section equilibrium and material properties (concrete, steel, adhesive and composite) has been previously developed by authors [1], [2], [3]. In the present study, this method is extended to describe the fatigue behavior of RC beams.A specific modeling coupled with an experimental investigation on large-scale beams made it possible to compare the theoretical and experimental fatigue behaviors of RC beams with and without composite reinforcements. The model is developed and calibrated using data of the literature or recorded during experiments specifically carried out for this study. Results showed that the beam deflection and the strain in each material could be calculated with a sufficient accuracy, so that the fatigue behavior of the FRP-strengthened beams was correctly estimated by the model. 相似文献
14.
FRP由于其高强度、轻质量及防腐等特性,在结构加固改造中的应用越来越广泛。根据文献中的FRP加固钢筋混凝土梁的荷载—变形模型,通过计算梁在开裂、钢筋屈服及极限情况3个阶段的弯矩和变形,建立了基于Rasheed模型的三折线简化分析模型,从而使荷载—变形关系计算更加简便。对该模型的数值试验模拟算例分析结果表明,该模型与实际的荷载变形曲线能较好地吻合,为FRP的应用研究提供参考。 相似文献
15.
16.
17.
基于连续损伤理论,考虑胶层的剪切效应,建立了FRP加固修补混凝土结构的高阶剪切弯曲与面内变形耦合的非线性有限元分析模型。FRP加固修补的缺陷在于,失效主要是混凝土的破坏和胶层的失效,纤维布的性能并没有得到充分的发挥,采用将纤维布进行初始拉伸后贴于梁的下表面的方法对梁进行修补,可以改善加固修补效果:将纤维布预先进行3mm和5mm的拉伸并对加固过程进行了非线性有限元分析模拟,并与试验结果进行了对比,证明了此方法加固的有效性。 相似文献
18.
对CFRP受剪加固钢筋混凝土梁的方法及破坏模式进行了分析,对受剪承载力的计算方法进行了研究,提出了采用CFRP加固混凝土构件的施工要点,以供参考。 相似文献
19.
预应力碳纤维板加固钢筋混凝土梁预应力损失试验研究 总被引:2,自引:0,他引:2
通过25根预应力碳纤维板加固钢筋混凝土梁试验研究,分析了预应力加固梁制作各工序的预应力损失。试验结果表明:当预应力水平分别为20%和30%时,预应力碳纤维板加固梁的平均预应力损失(相对于初始预应力)分别为14.38%和15.36%。对碳纤维板采取超张拉和二次超张拉技术,可以有效减小预应力损失。基于国内外混凝土结构设计规范的预应力损失计算方法,将预应力损失分为三部分:碳纤维板和锚具间的滑移引起的预应力损失、混凝土弹性压缩变形引起的预应力损失和碳纤维板应力松弛造成的预应力损失。在试验基础上,提出了三部分预应力损失的计算表达式,为预应力碳纤维板的加固设计提供参考。 相似文献
20.
《Construction and Building Materials》2007,21(11):1997-2006
The effectiveness of externally bonded reinforcement of a strengthened Reinforced Concrete (RC) beam subjected to a shear-dominant loading regime is not well-established. The aim of this paper is to clarify the structural performance of RC beams without any internal shear reinforcement but strengthened with Carbon Fibre Reinforced Polymer (CFRP) laminates when the primary mode of failure of the un-strengthened beam is in shear. Four RC beams were specifically designed without and with an externally anchorage system, which was carefully detailed to enhance the benefits of the strengthening lamina and counteract the destructive effects of shear forces. All the four beams were identical in terms of their geometry, internal reinforcement and concrete strength but varied in their test loading regime to highlight the role of shear. All the beams were tested under four point bending and extensively instrumented to monitor strains, cracking, load capacity and failure modes. The structural response of the four beams is then critically analysed in terms of deformability, strength and failure processes under a shear loading regime. It is shown that with a carefully designed anchorage system, a predominantly brittle shear failure of a strengthened beam can be transformed to an almost ductile failure with well-defined enhancement of structural performance in terms of both deformation and strength. The results presented in this paper should enable engineers to totally avoid shear failure in strengthening beams with little or even no internal shear reinforcement. 相似文献