首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A recent and promising method for shear strengthening of reinforced concrete (RC) members is the use of near-surface mounted (NSM) fiber-reinforced polymer (FRP) reinforcement. In the NSM method, the reinforcement is embedded in grooves cut onto the surface of the member to be strengthened and filled with an appropriate binding agent such as epoxy paste or cement grout. Only a few studies have been conducted to date on the use of NSM FRP reinforcement for shear strengthening of RC beams. These studies identified some critical failure modes related to debonding between the NSM reinforcement and the concrete substrate. However, more tests need to be conducted to identify all possible failure modes of strengthened beams. Moreover, virtually no test results are available on the behavior of shear-strengthened beams containing steel shear reinforcement, and on the effect of variables such as the type of epoxy used as groove filler. This paper illustrates a research program on shear strengthening of RC beams with NSM reinforcement, aimed at gaining more test results to fill the gaps in knowledge mentioned above. A number of beams were tested to analyze the influence on the structural behavior and failure mode of selected test parameters, i.e. type of NSM reinforcement (round bars and strips), spacing and inclination of the NSM reinforcement, and mechanical properties of the groove-filling epoxy. One beam strengthened in shear with externally bonded FRP laminates was also tested for comparison purposes. All beams had a limited amount of internal steel shear reinforcement to simulate a real strengthening situation. Test results are presented and discussed in the paper.  相似文献   

2.
This paper presents a rational model to predict the ultimate load capacity of reinforced concrete (RC) beams strengthened by a combination of longitudinal and transverse fiber reinforced polymer (FRP) composite plates/sheets (flexure and shear strengthening system). The model is based on the truss analogy and the theory of plasticity and is opportunely refined in order to incorporate some critical aspects, such as variable angle crack, non-uniform FRP stress distribution over the shear crack, shear span/depth ratio. It is a general and unified model that allows consideration of all the main possible failure mechanisms of strengthened RC beams, related to flexural-shear interaction, shear web-crushing and pure flexural mechanisms. The model is validated against a large number of beam tests reported in the literature, involving a wide range of geometrical and mechanical characteristics. The numerical investigation shows a very satisfactory correlation between predicted and experimental data.  相似文献   

3.
In the present paper we analyse the edge debonding failure of a beam strengthened by a fibre reinforced polymer. As well known from the literature, a stress concentration is found at the edge of the reinforcement which triggers the debonding of the fibre reinforced polymer strip when the load reaches a certain critical threshold. Two failure criteria are proposed to study the debonding mechanism. The former is a stress assessment criterion, i.e. failure takes place whenever the maximum shearing stress reaches a limit value (the interfacial bond strength). The latter is an energy, fracture mechanics criterion, i.e. failure takes place as the strain energy release rate reaches a critical value (the interfacial fracture energy). It is argued that the energy criterion is more effective to address the edge debonding failure mode. However, under the assumption of shear lag behaviour for the adhesive layer between the beam and the reinforcement, a general rule linking the two approaches is set, thus providing the key to bypass the rather complicated energetic analysis. The final part of the paper is devoted to the crack instabilities that may occur after the debonding initiates, i.e. snap–back and snap-through phenomena. The size effect is then investigated by means of a dimensional analysis and a simplified formula providing the critical load is proposed that could be useful in engineering practice.  相似文献   

4.
Fiber-reinforced polymer (FRP) bars can be used as internal reinforcement for new reinforced concrete (RC) structures and as near-surface mounted (NSM) reinforcement for the strengthening of RC structures. The NSM method is an emerging strengthening technique for RC structures, where FRP bars are embedded into grooves cut in the cover of RC members. In both cases, strain monitoring of the FRP bars is desirable either for the investigation of the structural behavior or for the long-term health monitoring of the structure. This paper presents a study in which fiber-optic sensors were embedded into glass FRP (GFRP) bars to produce smart GFRP bars for NSM applications. The manufacturing process of the smart FRP bars is illustrated and their performance in tensile, bond and beam flexural tests is examined to assess the effectiveness of these smart FRP bars for achieving the dual purpose of structural strengthening and strain monitoring. On the basis of the test results, the advantages and limitations of fiber-optic sensors compared to electrical strain gages in the strain monitoring of NSM FRP bars are discussed. The bond and beam test results also confirm the effectiveness of the NSM method for the strengthening of RC structures.  相似文献   

5.
80年代以来,FRP(纤维增强复合材料)作为一种高性能的新型混凝土结构加固补强材料受到科研院所和工程界的广泛关注[1]。迄今为止,国内外关于FRP片材加固钢筋混凝土结构研究的试验和理论研究已相当丰富,并在工程界得到大量实践应用。本文着重介绍了FRP片材加固钢筋混凝土梁的抗弯性能、抗剪性能、以及裂缝、刚度研究,以期为FRP片材的进一步研究和应用提供参考。  相似文献   

6.
Shear strengthening of Reinforced Concrete (RC) beams by means of Near Surface Mounted (NSM) Fiber Reinforced Polymer (FRP) strips is an emerging technique for structural rehabilitation that is gaining increasing interest in the FRP community, mainly because of some advantages it provides with respect to the better consolidated technique of the Externally Bonded Reinforcement (EBR). Those advantages mainly encompass a better exploitation of material and a higher protection against vandalism, along with a relative faster applicability. Yet, the behavior of such NSM FRP strips is extremely complex, as can be gathered by experimental evidence, due to the complex geometry, the nonlinear mechanical properties of bond, and the scatter affecting the concrete tensile properties, along with their nonlinearity. In an attempt to provide valuable contribution to a better understanding of their behavior, a three dimensional mechanical model for simulating the shear strength contribution provided by a system of NSM FRPs to a RC beam throughout the loading process is herein presented along with the main findings. It correctly interprets the experimental evidence, taking into account complex phenomena such as the interaction between bond transferred force and concrete fracture, along with the interaction between adjacent strips.  相似文献   

7.
杨友龙 《山西建筑》2010,36(32):62-63
基于2根非加固木梁和4根纤维增强复合材料(Fiber Reinforced Polymer,FRP)加固梁的抗剪性能对比实验的研究,得出在实木梁端用FRP箍进行抗剪加固应当采用高弹性模量的CFRP的结论,并指出梁端CFRP箍可以有效的抑制剪切裂纹的扩展。  相似文献   

8.
The use of fibre reinforced polymer (FRP) externally bonded (EB) plates in the form of pultruded and wet lay-up plates is now generally accepted as an efficient and unobtrusive technique for retrofitting reinforced concrete structures and is applied worldwide. However, EB plates, and in particular EB pultruded plates, tend to debond at strains much lower than their fracture strains. An alternative technique of adhesively bonding pultruded plates or strips in narrow grooves sawn into the concrete cover, that is near surface mounted (NSM) plates or strips, is now gradually gaining acceptance as tests have shown that the debonding strains can be much higher than that for EB plates. However, tests have also shown that NSM plates can interact with adjacent parallel NSM plates to cause intermediate crack (IC) debonding of groups of NSM strips at reduced strengths. This paper develops a mathematical model for the IC debonding resistance of groups of NSM plates for use in the flexural and shear strengthening of reinforced concrete beams.  相似文献   

9.
Reinforced concrete (RC) beams may be strengthened for shear with externally bonded fibre reinforced polymer (FRP) composites through complete wrapping, U-jacketing or bonding on their sides only. The two main shear failure modes of such strengthened beams are FRP rupture and debonding. In both modes of failure, the contribution of the bonded FRP reinforcement to the shear capacity of the beam depends strongly on the stress (or strain) distribution in the FRP at the ultimate limit state. This paper presents a numerical study of the FRP stress distribution at debonding failure in U-jacketed or side-bonded beams using a rigorous FRP-to-concrete bond–slip model and assuming several different crack width distributions. Numerical results indicate that Chen and Teng’s early simple assumption [Chen JF, Teng JG. Shear capacity of FRP-strengthened RC beams: FRP debonding. Constr Build Mater 2003;17:27–41] for the stress distribution in the FRP results in satisfactory predictions for the effective FRP stress in most cases for both U-jacketed and side-bonded beams. However, it may become unconservative for side-bonded beams that have only light flexural steel reinforcement.  相似文献   

10.
External bonding of fiber-reinforced polymers (FRP) on concrete beams is particularly attractive for the strengthening of civil engineering structures in order to increase their strength and stiffness. Principles for design of such strengthening methods are now established and many guidelines exist. However, fatigue design procedure is still an ongoing research topic.This paper focuses on the damage behavior of FRP-strengthened reinforced concrete (RC) structures subjected to fatigue loading.In order to design bonded reinforcements, an iterative computational method based on section equilibrium and material properties (concrete, steel, adhesive and composite) has been previously developed by authors [1], [2], [3]. In the present study, this method is extended to describe the fatigue behavior of RC beams.A specific modeling coupled with an experimental investigation on large-scale beams made it possible to compare the theoretical and experimental fatigue behaviors of RC beams with and without composite reinforcements. The model is developed and calibrated using data of the literature or recorded during experiments specifically carried out for this study. Results showed that the beam deflection and the strain in each material could be calculated with a sufficient accuracy, so that the fatigue behavior of the FRP-strengthened beams was correctly estimated by the model.  相似文献   

11.
对CFRP受剪加固钢筋混凝土梁的方法及破坏模式进行了分析,对受剪承载力的计算方法进行了研究,提出了采用CFRP加固混凝土构件的施工要点,以供参考。  相似文献   

12.
FRP由于其高强度、轻质量及防腐等特性,在结构加固改造中的应用越来越广泛。根据文献中的FRP加固钢筋混凝土梁的荷载—变形模型,通过计算梁在开裂、钢筋屈服及极限情况3个阶段的弯矩和变形,建立了基于Rasheed模型的三折线简化分析模型,从而使荷载—变形关系计算更加简便。对该模型的数值试验模拟算例分析结果表明,该模型与实际的荷载变形曲线能较好地吻合,为FRP的应用研究提供参考。  相似文献   

13.
基于连续损伤理论,考虑胶层的剪切效应,建立了FRP加固修补混凝土结构的高阶剪切弯曲与面内变形耦合的非线性有限元分析模型。FRP加固修补的缺陷在于,失效主要是混凝土的破坏和胶层的失效,纤维布的性能并没有得到充分的发挥,采用将纤维布进行初始拉伸后贴于梁的下表面的方法对梁进行修补,可以改善加固修补效果:将纤维布预先进行3mm和5mm的拉伸并对加固过程进行了非线性有限元分析模拟,并与试验结果进行了对比,证明了此方法加固的有效性。  相似文献   

14.
栗青  刘军  黄宝宗 《建筑节能》2006,34(3):25-27
基于连续损伤理论,考虑胶层的剪切效应,建立了FRP加固修补混凝土结构的高阶剪切弯曲与面内变形耦合的非线性有限元分析模型。FRP加固修补的缺陷在于,失效主要是混凝土的破坏和胶层的失效,纤维布的性能并没有得到充分的发挥,采用将纤维布进行初始拉伸后贴于梁的下表面的方法对梁进行修补,可以改善加固修补效果;将纤维布预先进行3mm和5mm的拉伸并对加固过程进行了非线性有限元分析模拟,并与试验结果进行了对比,证明了此方法加固的有效性。  相似文献   

15.
栗青  刘军  黄宝宗  金生吉 《混凝土》2006,127(8):12-14
基于连续损伤理论,考虑胶层的剪切效应,建立了FRP加固修补混凝土结构的高阶剪切弯曲与面内变形耦合的非线性有限元分析模型。FRP加固修补的缺陷在于失效,失效主要是混凝土的破坏和胶层的失效,纤维布的性能并没有得到充分的发挥,采用将纤维布进行初始拉伸后贴于梁的下表面的方法对梁进行修补,可以改善加固修补效果;将纤维布预先进行3mm和5mm的拉伸并对加固过程进行了非线性有限元分析模拟,并与试验结果进行了对比,证明了此方法加固的有效性。  相似文献   

16.
The effectiveness of externally bonded reinforcement of a strengthened Reinforced Concrete (RC) beam subjected to a shear-dominant loading regime is not well-established. The aim of this paper is to clarify the structural performance of RC beams without any internal shear reinforcement but strengthened with Carbon Fibre Reinforced Polymer (CFRP) laminates when the primary mode of failure of the un-strengthened beam is in shear. Four RC beams were specifically designed without and with an externally anchorage system, which was carefully detailed to enhance the benefits of the strengthening lamina and counteract the destructive effects of shear forces. All the four beams were identical in terms of their geometry, internal reinforcement and concrete strength but varied in their test loading regime to highlight the role of shear. All the beams were tested under four point bending and extensively instrumented to monitor strains, cracking, load capacity and failure modes. The structural response of the four beams is then critically analysed in terms of deformability, strength and failure processes under a shear loading regime. It is shown that with a carefully designed anchorage system, a predominantly brittle shear failure of a strengthened beam can be transformed to an almost ductile failure with well-defined enhancement of structural performance in terms of both deformation and strength. The results presented in this paper should enable engineers to totally avoid shear failure in strengthening beams with little or even no internal shear reinforcement.  相似文献   

17.
栗青  刘军  黄宝宗 《混凝土》2006,(2):16-18
基于连续损伤理论,考虑胶层的剪切效应,建立了FRP加固修补混凝土结构的高阶剪切弯曲与面内变形耦合的非线性有限元分析模型。利用自编的有限元分析软件对GFRP加固混凝土梁进行了有限元分析。证明了该模型的有效性。利用此分析方法对未加固、初始加固及出现宏观裂纹后进行加固的混凝土渠进行分析对比,从而为实际工程的应用提供了理论依据。  相似文献   

18.
One of the most efficient technique for improving the shear strength of deteriorated RC members is bonding external carbon fiber-reinforced polymer (CFRP) composites. However, delimitation and debonding of the strengthening material frustrates to achieve the expected requirements. Near surface mounting (NSM) is a recent strengthening technique that was developed with the anticipation of obstructing the drawbacks of external CFRP usage. To demonstrate the efficiency, an experimental program was conducted to validate the effect of CFRP reinforcements on behavior and ultimate strength of shear deficient (without stirrups) reinforced concrete (RC) beams under cyclic loading. Accordingly seven of eight beams except the flexural reference were fabricated and strengthened with CFRP reinforcements with distinct CFRP reinforcement arrangements. Spacing of CFRP reinforcements, variation of CFRP reinforcement diameter and application of CFRP reinforcements were the selected variables of the experimental program. Tests results confirmed that all in all an increase in strength was seen in every specimen to which CFRP reinforcements applied with no occurrence of delamination, debonding or fracture of CFRP reinforcements. To verify the reliability, experimental results were compared with ACI-440 guideline and the proposals of De Lorenzis and Nanni.  相似文献   

19.
尹志强 《山西建筑》2010,36(31):58-59
通过对3根对比梁和8根加固粱进行了试验研究,结果表明:CFRP布嵌入式加固能有效提高混凝土梁的抗弯承载力,另外,不同初始弯矩作用下加固梁的极限承载力几乎相同。  相似文献   

20.
内嵌FRP加固钢筋混凝土梁的受弯承载力分析   总被引:5,自引:0,他引:5  
对内嵌FRP加固矩形截面梁的三种弯曲破坏形式(钢筋屈服前混凝土压碎、钢筋屈服后混凝土压碎和钢筋屈服后FRP拉断)和两种界限破坏情形(钢筋屈服时混凝土压碎和FRP拉断时混凝土压碎)进行了极限状态分析,提出了各种弯曲破坏极限状态相应的承载力计算公式和界限条件,其计算结果与作者及国外已有试验实测值吻合较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号