首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Asphalt binder viscosity is of great importance during the production process of hot mix asphalt mixture as typically asphalt plants will store binders between 149 °C and 177 °C. SHRP guidelines state that asphalt binder viscosity must not exceed 3 Pa s. Therefore, given the documented increases in asphalt viscosity when modified with crumb rubber modifier (CRM) it is necessary to produce asphalt binder that fulfills the SHRP criteria while not exceeding plant mixing and storing requirements. This paper reports the results of an investigation of the importance of CRM properties on viscosity of CRM binder. Two binder sources were modified at four concentration levels using four different crumb rubber sources; the viscosities of the produced binders were evaluated by AASHTO T 316. Crumb rubber properties were evaluated by elemental analysis using a scanning electron microscope (SEM) and by determination of glass transition temperature (Tg) using a differential scanning calorimeter (DSC). In general, results indicate that processing procedure and tire type plays an important role in the determination of CRM binder viscosity.  相似文献   

2.
The application of crumb rubber in asphalt mixtures is intended to improve the binder properties by reducing the binder’s inherent temperature susceptibility. This research investigated the interaction effects of CRM binders as a function of various blending treatments in the laboratory. For this study, CRM binders were produced using seven blending times (5, 30, 60, 90, 120, 240, and 480 min), three blending temperatures (177, 200, and 223 °C), and four rubber contents (5%, 10%, 15%, and 20% by weight of asphalt binder). The results from this study showed that (1) The interaction time and interaction temperature for CRM binders were observed to have significant effect on the binder properties; (2) The longer time and higher temperature for interaction of CRM binders resulted in an increase in the high failure temperature and the viscosity. This is thought to be due to the increase in the rubber mass through binder absorption. However, this study found that the control binder of PG 64-22 had little change of the binder properties as a function of interaction conditions; (3) The CRM percentage influence is statistically significant on the viscosity and G*/sin δ values. Also, the asphalt binder with higher CRM percentage showed a higher large molecular size (LMS) value, and the increase in CRM percentage is considered to result in the additional loss of the low molecular weight in the asphalt binder to the CRM.  相似文献   

3.
This paper describes the development of an empirical model which may be used for predicting the G*/sin δ for neat and crumb rubber modified (CRM) binders. The model was developed using 36 unique CRM binder combinations, crumb rubber concentrations were varied at 5% intervals between 5% and 20%. The effects of crumb rubber particle size on model accuracy were also studied, ultimately a model was produced with the capability of predicting G*/sin δ values over a range of temperatures and crumb rubber concentrations. By definition, the upper limit of the performance grade is dependent on the G*/sin δ value; therefore, the relationship was also considered in terms of high end failure temperature.The rubber coefficient for G*/sin δ (Rcg) was identified as an important parameter in the estimation of G*/sin δ in addition to the CRM. This term is a quantitative representation of the increase typically witnessed in G*/sin δ values with the addition of CRM. Ambient ground CRM exhibited higher Rcg values than cryogenically ground particles. Additionally, 95% confidence intervals were generated for the predictive model, thus providing a range of accuracy for the model. The resulting confidence intervals were approximately ±1300 Pa, these confidence intervals were seen to capture 92.6% of the 462 data points used. Findings from this research suggest that the differences between cryogenic and ambient CRM binder are accurately described using the Rcg, furthermore binder properties may be predicted using an empirical equation.  相似文献   

4.
This paper investigates the effects of different sizes of crumb rubber modifier (CRM) on the high temperature susceptibility of three gradations (AC-10, AC-20 and PA) of wearing course mixtures. A wet process and 10% CRM by total weight of binders were used in these studies and the control variables for these studies included three CRMs of sizes 0.15 mm, 0.30 mm and 0.60 mm. The evaluations were twofold. Firstly, a comparison of the properties of those modified and unmodified binders at a wide range of testing temperatures and ageing conditions was conducted. Secondary, a comparison of the rutting resistance of the CRM and conventional mixtures was made. The results show that all the CRMs have overall contributed to better performance of both binders and mixtures at high temperatures. In addition, among these three CRM sizes, mixtures modified with 0.15 mm CRM exhibited the best effect on the dense-graded mixture (AC-10 and AC-20) whereas mixtures modified with 0.60 mm CRM exhibited the best effect on the open-graded mixture of porous asphalt (PA).  相似文献   

5.
There are many variables of crumb rubber modifier (CRM) and asphalt binder, affecting the interaction of the CRM with the binder when crumb rubber modified binder (CRM binder) is produced. In this study, the influence of the surface area of CRM blends on the high temperature properties, i.e., the complex modulus (G1), the phase angle and high temperature grade of the CRM binders was investigated. To this end, the surface areas of CRM particles were measured using the BET (Brunauer, Emmett and Teller) tester, while weighted average particle size of CRM blends was calculated based on their graduations and then used as a size index. High temperature properties of CRM binders were measured using Dynamic Shear Rheometer (DSR) test. A total of 108 CRM binders were produced using different combinations of these variables. Results observed from this study indicated: (1) the surface area of the ambient CRM was twice as large as that of the cryogenic one, leading to a much higher G1 and phase angle of the CRM binders; (2) the phase angle and G1 were affected by both the surface area and average size; however, the average size is the predominating factor; and (3) ambient CRM binders were produced about 3 °C in high temperature grade higher than cryogenic CRM binders.  相似文献   

6.
This study was initiated to investigate the aging characteristics of binders due to the reaction with the crumb rubber. For this laboratory study, the crumb rubber modified (CRM) and control binders were aged using an oven aging method. Also, asphalt mixtures with CRM or control binders were made and subjected to short-term and long-term aging treatments. The properties of these aged binders were evaluated using gel permeation chromatography (GPC) test procedures. The results from this study showed that: (1) the higher CRM percentage resulted in the higher large molecular size (LMS) value of asphalt binder under the binder aging conditions, and the rate of increase in the LMS value was found to have a relation to the CRM percentage. The asphalt binders with higher CRM percentages (15% and 20%) had a trend the LMS values decrease after a certain level. This finding is thought to be related to the required time for the rubber to be fully digested; (2) after subjecting to the long-term oven aging, the asphalt mixtures with the control and CRM modified binders were found to have statistically insignificant differences in aging level, measured using the LMS values. The very thin film thickness of binder in asphalt mixture and the aging temperature of 100 °C insufficient to enable a reaction were considered to be the main reasons that no differences were observed from the standpoint of the aging effect.  相似文献   

7.
The use of crumb rubber modifier (CRM) in bituminous mixes made by the dry process is not as widely used as the wet process. Nonetheless, this process has advantages, such as the potential to consume larger quantities of crumb rubber, thus resulting in greater savings in energy and natural resources. This research study contributes to the further development and evolution of the dry process through the analysis of the effect of the digestion time (the contact time between the crumb rubber and the bitumen) and the quantity of crumb rubber on the mix design properties. The results of the study showed that the digestion time had no influence on the selection of the optimal binder content or on the compaction of the mixture. In contrast, the digestion time was found to have an impact on the mechanical performance of the mix. In this respect, an increase in the quantity of crumb rubber contributed to a corresponding increase in the amount of bitumen needed, and also caused the mix to become less compact. This study showed that a crumb rubber percentage of less than 1% of the total weight of the mix and a digestion time of 90 min produced the best results.  相似文献   

8.
This study investigates the effect of cement additive on some properties of asphalt binder using Superpave testing methods. Six cement-to-asphalt (C/A) ratios were considered in the study: 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30 by volume of asphalt binder. The experimental tests that were conducted in the study included the Superpave rotational viscosity (RV) test and the dynamic shear rheometer (DSR) test. The RV test was conducted at the Superpave-specified high temperature of 135 °C that represents the average mixing and laydown temperature, and at seven different rotational speeds of 5, 10, 20, 30, 50, 60, and 100 rpm. On the other hand, the DSR test was conducted at four test temperatures of 58, 64, 70, and 76 °C; one lower and two higher than the Superpave high performance grade (PG) temperature of the asphalt binder used in the study (PG 64). The loading frequency used in the DSR test was 10 rad/s (1.59 Hz) as specified by the Superpave system. Results of the study showed that the addition of Portland cement to asphalt binders increased the rotational viscosity (RV) of asphalt binders at 135 °C and different rotational speeds. The C/A ratio of 0.15 was found to be the optimum ratio that achieved a balanced increase in the rotational viscosity and the value of the DSR G*/sin δ rutting parameter of asphalt binders. The C/A ratio had insignificant effects on the Newtonian behavior, the phase angle (δ), and the elastic behavior of asphalt binders. The increase in C/A ratio increased the stiffness of asphalt binders represented by the complex shear modulus (G*) value. The increase in the C/A ratio improved the rutting parameter, G*/sin δ value, at all temperatures. The increase in C/A ratio improved the Superpave high PG temperature (the high temperature at which the asphalt binder passed the Superpave criteria for G*/sin δ value). It was also shown that the best function that described the relationship between each of RV, G*, and G*/sin δ and the C/A ratio was the exponential function with high coefficient of determination (R2).  相似文献   

9.
The application of crumb rubber modifier (CRM) in asphalt mixtures is intended to improve the properties of binder by reducing the binder’s inherent temperature susceptibility. During the interaction with asphalt binder, the CRM particles absorb a portion of the oils in asphalt binder and the particles swell; therefore increasing the viscosity and stiffness of the CRM binder. Still, the performance properties of CRM binders in hot mix asphalt (HMA) pavement are considered to be unclear due to the various interaction effects of CRM with asphalt binders, depending on the CRM percentage, source and size. In this study, a laboratory investigation was conducted on the properties of CRM binders as a function of CRM processing method and percentages. A total of twenty-four CRM binders (3 binder sources * 2 CRM processing methods * 4 CRM percentages) were produced and artificially aged through an accelerated aging process. Evaluation of the CRM binders included the following testing procedures: Viscosity at high temperature, performance properties at high and intermediate temperatures, and cracking properties at low temperature. The results from this study indicated that the higher CRM percentages for CRM binders seemed to lead to a higher viscosity, a better rutting resistance and a less chance for low temperature cracking. In general, the ambient CRM was found to be more effective on producing the CRM binders that are more viscous and less susceptible to rutting and cracking.  相似文献   

10.
The paper deals with the cementitious binders produced by blending 60–70% fly ash with fluorogypsum, hydrated lime sludge, with and without Portland cement and chemical activator in different proportions. Data show that strength development of cementitious binders takes place through formation of ettringite, C–S–H and wollastonite compounds. The durability of these binder has been studied by its performance in water and by accelerated aging i.e. alternate wetting and drying as well as by heating and cooling cycles at temperatures in the range 27–50 °C. The results indicate Lawrence of strength of binder with the increasing cyclic studies at different temperatures. The maximum fall in compressive strength was noticed at 50 °C.  相似文献   

11.
《Building and Environment》2005,40(11):1492-1504
The Taguchi method was used to determine optimum conditions for tire rubber in asphalt concrete with Marshall Test. The tire rubber in asphalt concrete was explored under different experimental parameters including tire rubber gradation (sieve #10–40), mixing temperature (155–175 °C), aggregate gradation (grad. 1–3), tire rubber ratio (0–10% by weight of asphalt), binder ratio (4–7% by weight of asphalt), compaction temperature (110–135 °C), and mixing time (5–30 min). The optimum conditions were obtained for tire rubber gradation (sieve #40), mixing temperature (155 °C), aggregate gradation (grad. 1), tire rubber ratio (10%), binder ratio (5.5%), compaction temperature (135 °C), mixing time (15 min).  相似文献   

12.
The properties of AC-5 control asphalt binder, mixture containing the same asphalt were compared with the properties of AC-10 asphalt binder modified by 0.75%, 1%, 2%, and 3% of polyester resin (PR), mixture containing pure AC-10 and AC-10 modified by 0.75% of PR, respectively.Initial research was done to determine the physical properties of unmodified and PR modified asphalt binders. The AC-10 asphalt binder modified by 0.75% of PR had good results compared to AC-5 control asphalt binder and all other modified binders, and hence this modified binder as well as unmodified binders were used to prepare Marshall samples for Marshall stability and flow, indirect tensile stiffness modulus (ITSM), indirect tensile strength (ITS) and creep stiffness tests.The results of investigation indicate that AC-10 + 0.75% PR binder has better physical properties than AC-5 control asphalt binder and, at the same time, PR improves mechanical properties of asphalt mixture.  相似文献   

13.
The use of furfural (C5H4O2) as an activation agent has been suggested as a method to improve the rheological properties of asphalt binders due to its compatibility with crumb rubber. This study uses five different crude sources and both ambient and cryogenic produced crumb rubber modifiers (CRM). The rheological properties for furfural activated and conventional CRM binders were evaluated using the dynamic shear rheometer (DSR) and the gel permeation chromatography (GPC). The results indicated that furfural activation has variable effects on the properties of the CRM binder. However, the most pronounced effect is shown in the storage stability improvement which will have an effect on the storage of CRM binder. Also, the activation caused a reduction in the ratio of the small molecular size distribution which is considered an improvement in the binder properties.  相似文献   

14.
This research investigated the feasibility using asphalt rubber (AR), produced by blending ground tire rubber (GTR) with an asphalt, as a binder for stone matrix asphalt (SMA). Two different sizes of GTR produced in Taiwan were used. The potential performance of AR–SMA mixtures was also evaluated. The results of this study showed that it was not feasible to produce a suitable SMA mixture using an asphalt rubber made by blending an AC-20 with 30% coarse GTR with a maximum size of 0.85 mm. However, SMA mixtures meeting typical volumetric requirements for SMA could be produced using an asphalt rubber containing 20% of a fine GTR with a maximum size of 0.6 mm. No fiber was needed to prevent drain-down when this asphalt rubber was used. The AR–SMA mixtures were not significantly different from the conventional SMA mixtures in terms of moisture susceptibility from the results of AASHTO T283 tests. The results of the wheel tracking tests at 60 °C show that rutting resistance of AR–SMA mixtures was better than that of the conventional SMA mixtures.  相似文献   

15.
Firstly, the performance-based properties of rejuvenated aged asphalt binders, i.e., the blends of aged binders containing a rejuvenator at various percentages, were investigated under high, intermediate and low temperatures. The tests were conducted on the blends at three stages as follows: no aging, rolling thin film oven (RTFO) residuals and as well RTFO + pressure aging vessel (PAV) residuals through dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests. Optimum concentrations of the rejuvenator needed for the blends to reach a target PG grade were obtained from the blending charts of the rejuvenated aged binders in terms of performance properties. The rejuvenator is a soft binder containing a low asphaltene content of 2 wt%. Secondly, selected performance-based properties were conducted on hot mix asphalt (HMA) using the rejuvenated aged binder and a virgin HMA as a control mixture. Results showed that the rejuvenator affected significantly the performance-based properties of both the rejuvenated aged binders and the mixtures containing the rejuvenated aged binders. It was possible to get optimum concentrations of the rejuvenator using the blending charts so that the rejuvenated binders reach a target PG grade. The mean value of the concentrations was proved to be more reliable through the performance-based properties of the mixtures if it is used for a design value for recycling. The properties of the asphalt paving mixtures with the rejuvenated binders were even improved or in the same level as the properties of the virgin mixtures.  相似文献   

16.
Benefits of adding Tall oil pitch (TOP), Styrene-butadiene-styrene (SBS) and TOP + SBS to AC-10 in variant quantities to AC-10 were investigated. Initial research was done to determine the physical properties of asphalt cement and modifiers.Seven asphalt binder formulations were prepared with 8% of TOP; 8 + 3, 8 + 6 and 8 + 9% of TOP + SBS, respectively; 3, 6 and 9% of SBS by total weight of binder. After that, Marshall samples were prepared by using the modified and unmodified asphalt binders.Additionally, compression strength test were done in different conditions to determine water, heat and frost resistance of all Marshall samples.Fatigue life and plastic deformation tests for Marshall samples (for different asphalt mixtures: modified and unmodified) were carried out using PC controlled repeated load indirect tensile test equipment developed at Suleyman Demirel University by Tigdemir (SDU-Asphalt Tester).The results of investigation indicate that asphalt mixture modified by 8% TOP + 6% SBS gives the best results in the tests that were carried out in this study, so that, this modification increases physical and mechanical properties of asphalt binder.  相似文献   

17.
The objective of this study is to review existing literature in the area of nano-modification of asphalt and proceed to apply nano-materials to asphalt to improve the performance. This study integrates literature review, preparation, and characterization of nano-modified asphalt materials. In the experimental testing montmorillonite, nanoclay at 2% and 4% by weight of asphalt was blended in asphalt binder at a high temperature to exfoliate the nanoclay within the asphalt. The asphalt binder was then characterized using the Superpave? rotational viscosity, dynamic shear modulus, and direct tension test. The rotational viscosity results indicate that the addition of the two types of nanoclay, Nanoclay A and Nanoclay B, increased the rotational viscosity by an average of 41% and 112%, respectively, across test temperatures 80, 100, 130, 135, 150 and 175 °C. It was found that the dynamic shear complex modulus (G*) value increases significantly across a range of testing temperatures (from 13 to 70 °C) and loading frequencies (0.01–25 Hz). With 2% Nanoclay A reinforcement in the asphalt binder, the complex shear moduli generally increased by 66% while the 4% Nanoclay A reinforcement in the asphalt binder generally increased the shear complex moduli by 125%. The 2% and 4% Nanoclay B increased the shear complex moduli by 184% and 196%, respectively. In terms of direct tension strength, the use of Nanoclay A and Nanoclay B reduced the strain failure rate of the original binder while the secant or direct tension moduli showed increase with the addition of the nanoclays. In furtherance of this research, nanoclay-modified asphalt is being tested at percentages higher than 4% to underscore the fact that nanoclays may have the potential to reduce rutting and cracking.  相似文献   

18.
This paper focuses on the properties of sintered aggregates with low calcium bottom ash from coal fired thermal power plants using a wide range of clay binders through pelletization process. The experimental runs were designed using central composite design of response surface methodology. The aggregate was produced using a disc pelletizer. The pelletized aggregate was sintered at 800–1100 °C for 30–120 min. Sintered aggregates were tested for bulk density, 10% fines value and water absorption. The factors involved in the process are moisture content, binder, Ca(OH)2 dosage, sintering temperature and duration. It was observed that an increase in binder dosage and sintering temperature resulted in aggregates with higher 10% fines value and low water absorption. The properties of aggregates depended on the type of binder used. Aggregate with kaolinite and metakaolin binders resulted in high 10% fines value. The results indicate the potential for manufacturing high quality lightweight aggregate from bottom ash using clay binders.  相似文献   

19.
Both the RTFO (rolling-thin film oven) aging of asphalt binders and the STOA (short-term oven aging) of asphalt mixtures are designed to simulate aging during the construction of hot mix asphalt (HMA) pavements. Many studies have been conducted evaluating the aging effects on asphalt binders since their properties can be easily measured using many conventional tests, such as rotational viscometer, DSR (dynamic shear rheometer), and BBR (bending beam rheometer). However, studies on asphalt mixture aging have been limited to mechanical properties such as strength and fatigue characteristics because considerable effort is required to identify the aging of the asphalt binder in a mixture. This study evaluated the effects of short-term oven aging on asphalt mixtures using the GPC (gel-permeation chromatography) procedure. Nine asphalt mixtures, using three different binder sources, were prepared and five short-term aging methods were used to evaluate these mixes. For comparison, the RTFO aging was also conducted for nine asphalt binders. The aging of a binder within asphalt mixtures, including polymer-modified mixtures, could be identified under various short-term aging conditions. Statistical analysis of the GPC test results indicated that two commonly used short-term aging methods in the laboratory, a 154 °C oven aging for 2 h and a 135 °C oven aging for 4 h, are not significantly different, based on the increase in the large molecular size (LMS) ratios. The RTFO aging method was found to have less effect on binder aging than the short-term oven aging methods of asphalt mixtures.  相似文献   

20.
To improve long-term hydraulic properties of binders from RHA and lime, 25–75% MK was added to RHA. Binders were formulated and properties were compared to that containing RHA or MK as only pozzolans. The lime–pozzolan ratio was 1:3. The properties tested after 7, 28 and 56 days were: absolute density and fineness of the binders, initial setting time, chemical and mineralogical composition of hydrated binders, flexural and compressive strengths and water absorption of mortars. The micrographs of the hardened binder pastes at 56 days permitted to evaluate the densification of different matrixes and the development of pores. From the results obtained, it was concluded that, MK increased the density of mixtures and decreased their grindability. The presence of MK decreased the SiO2 content of binders and increases their Al2O3 and Fe2O3 contents. Calcium-silicate hydrates (CSH) gel and gehlenite (C2ASH8) were the main phases formed during the pozzolanic reaction in the presence of MK. No reduction in flexural and compressive strengths was observed after 28 days for binders containing MK. The mixture of 25% MK and 75% RHA which is recommended gave flexural and compressive strengths higher than binder with RHA or MK as the only pozzolan. Water absorption of mortars was less than 20%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号