首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对交互式遗传算法缺乏衡量评价不确定性的问题,采用离散适应值评价进化个体,利用灰度衡量评价的不确定性。通过确定离散适应值的灰度,获得反映种群进化分布的信息;基于此,给出了进化个体的自适应交叉和变异概率。将该算法应用于服装进化设计系统,仿真实例与分析结果表明,所提出的算法可以有效缓解人的疲劳,提高优化效率。  相似文献   

2.
Hybrid genetic algorithms are presented that use optimization heuristics and genetic techniques to outperform all existing programs for the timetabling problem. The timetabling problem is very hard (NP-complete) and a general polynomial time deterministic algorithm is not known. An artificial intelligence approach, in a logic programming environment, may be useful for such a problem. The decomposition and classification of constraints and the constraint ordering to obtain the minimization of the backtracking and the maximization of the parallelism are illustrated. The school timetabling problem is discussed in detail as a case study. The genetic algorithm approach is particularly well suited for this kind of problem, since there exists an easy way to assess a good timetable but not a well-structured automatic technique for constructing it. So, a population of timetables is created that evolves toward the best solutions. The evaluation function and the genetic operators are well separated from the domain-specific parts, such as the problem knowledge and the heuristics, i.e., from the timetable builder. A fundamental issue and a general problem in the decision process and automated reasoning is how to efficiently obtain logic decisions under disjunctive constraints. Logic constraint satisfaction problems are in general NP-hard and a general deterministic polynomial time algorithm is not known. The present article illustrates an approach based on the hybridization of constrained heuristic search with novel genetic algorithm techniques. It compares favorably with the best-known programs to solve decisions problems under logic constraints. Complexity of the new algorithms and results of significant experiments are reported. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
In this paper, we deal with a production/distribution problem to determine an efficient integration of production, distribution and inventory system so that products are produced and distributed at the right quantities, to the right customers, and at the right time, in order to minimize system wide costs while satisfying all demand required. This problem can be viewed as an optimization model that integrates facility location decisions, distribution costs, and inventory management for multi-products and multi-time periods. To solve the problem, we propose a new technique called spanning tree-based genetic algorithm (hst-GA). In order to improve its efficiency, the proposed method is hybridized with the fuzzy logic controller (FLC) concept for auto-tuning the GA parameters. The proposed method is compared with traditional spanning tree-based genetic algorithm approach. This comparison shows that the proposed method gives better results.  相似文献   

4.
Hybrid analytic and simulation models are used in solving complex problems in a variety of domains, but are less commonly used in production system design. This paper reviews hybrid approaches and their applications, proposes a new hybrid modeling class, and illustrates a cost function for selecting analytic or simulation modeling approaches via a problem solving process. To illustrate the new class, a case study is presented, in which a hybrid analytic and simulation modeling approach is used in designing a multi-stage, multi-buffer electronic device assembly line. Development of a robust integrated modeling support environment is proposed as a future direction.  相似文献   

5.
A parallel hybrid method for solving the satisfiability (SAT) problem that combines cellular genetic algorithms (GAs) and the random walk SAT (WSAT) strategy of greedy SAT (GSAT) is presented. The method, called cellular genetic WSAT (CGWSAT), uses a cellular GA to perform a global search from a random initial population of candidate solutions and a local selective generation of new strings. The global search is then specialized in local search by adopting the WSAT strategy. A main characteristic of the method is that it indirectly provides a parallel implementation of WSAT when the probability of crossover is set to zero. CGWSAT has been implemented on a Meiko CS-2 parallel machine using a 2D cellular automaton as a parallel computation model. The algorithm has been tested on randomly generated problems and some classes of problems from the DIMACS and SATLIB test set  相似文献   

6.
This work investigates the application of genetic algorithm (GA)-based search techniques to concurrent assembly planning, where product design and assembly process planning are performed in parallel, and the evaluation of a design configuration is influenced by the performance of its related assembly process. Several types of GAs and an exhaustive combinatorial approach are compared, in terms of reliability and speed in locating the global optimum. The different algorithms are tested first on a set of artificially generated assembly planning problems, which are intended to represent a broad spectrum of combinatorial complexity; then an industrial case study is presented. Test problems indicate that GAs are slightly less reliable than the combinatorial approach in finding the global, but are capable of identifying solutions which are very close to the global optimum with consistency, soon outperforming the combinatorial approach in terms of execution times, as the problem complexity grows. For an industrial case study of low combinatorial complexity, such as the one chosen in this work, GAs and combinatorial approach perform almost equivalently, both in terms of reliability and speed. In summary, GAs seem a suitable choice for those planning applications where response time is an important factor, and results which are close enough to the global optimum are still considered acceptable such as in concurrent assembly planning, where response time is a key factor when assessing the validity of a product design configuration in terms of the performance of its assembly plan.  相似文献   

7.
变搜索区域多种群遗传算法   总被引:9,自引:1,他引:9  
针对孤岛型多种群遗传算法存在的缺陷,提出一种变搜索区域多种群遗传算法.首先,依据各种群最优个体的分布给出搜索区域动态变化的条件和策略;其次,基于搜索区域的测度和搜索粒度给出种群规模自适应调整方法;再次,从搜索区域的测度和种群规模等角度定量分析算法的性能;最后,通过两个典型函数优化验证算法的有效性.  相似文献   

8.
Hybrid genetic algorithms for feature selection   总被引:15,自引:0,他引:15  
This paper proposes a novel hybrid genetic algorithm for feature selection. Local search operations are devised and embedded in hybrid GAs to fine-tune the search. The operations are parameterized in terms of their fine-tuning power, and their effectiveness and timing requirements are analyzed and compared. The hybridization technique produces two desirable effects: a significant improvement in the final performance and the acquisition of subset-size control. The hybrid GAs showed better convergence properties compared to the classical GAs. A method of performing rigorous timing analysis was developed, in order to compare the timing requirement of the conventional and the proposed algorithms. Experiments performed with various standard data sets revealed that the proposed hybrid GA is superior to both a simple GA and sequential search algorithms.  相似文献   

9.
This article considers the unrelated parallel machine scheduling problem with sequence- and machine-dependent setup times and machine-dependent processing times. Furthermore, the machine has a production availability constraint to each job. The objective of this problem is to determine the allocation policy of jobs and the scheduling policy of machines to minimize the total completion time. To solve the problem, a mathematical model for the optimal solution is derived, and hybrid genetic algorithms with three dispatching rules are proposed for large-sized problems. To assess the performance of the algorithms, computational experiments are conducted and evaluated using several randomly generated examples.  相似文献   

10.
郭广颂  崔建锋 《计算机应用》2008,28(10):2525-2528
为将交互式遗传算法成功应用于复杂优化问题,有必要提高交互式遗传算法的性能。提出基于进化个体适应值灰度的交互式遗传算法,该算法采用灰度衡量进化个体的适应值评价不确定性;通过适应值区间的分析,提取反映进化种群分布的信息;基于此,给出了进化个体的交叉和变异概率。将该算法应用于服装进化设计系统,结果表明该算法在每代可以获取更多的满意解。  相似文献   

11.
In basic genetic algorithm (GA) applications, the fitness of a solution takes a value that is certain and unchanging. This formulation does not work for ongoing searches for better solutions in a nonstationary environment in which expected solution fitness changes with time in unpredictable ways, or for fitness evaluations corrupted by noise. In such cases, the estimated fitness has an associated uncertainty. The uncertainties due to environmental changes (process noise) and to noisy evaluations (observation noise) can be reduced, at least temporarily, by re-evaluating existing solutions. The Kalman formulation provides a formal mechanism for treating uncertainty in GA. It provides the mechanics for determining the estimated fitness and uncertainty when a new solution is generated and evaluated for the first time. It also provides the mechanics for updating the estimated fitness and uncertainty after an existing solution is re-evaluated and for increasing the uncertainty with the passage of time. A Kalman-extended GA (KGA) is developed to determine when to generate a new individual, and when to re-evaluate an existing one and which to re-evaluate. This KGA is applied to the problem of maintaining a network configuration with minimized message loss, with mobile nodes and stochastic transmission. As the nodes move, the optimal network changes, but information contained within the population of solutions allows efficient discovery of better-adapted solutions. The sensitivity of the KGA to several control parameters is explored  相似文献   

12.
Interactive genetic algorithms are effective methods to solve an optimization problem with implicit or fuzzy indices, and have been successfully applied to many real-world optimization problems in recent years. In traditional interactive genetic algorithms, many researchers adopt an accurate number to express an individual’s fitness assigned by a user. But it is difficult for this expression to reasonably reflect a user’s fuzzy and gradual cognitive to an individual. We present an interactive genetic algorithm with an individual’s fuzzy fitness in this paper. Firstly, we adopt a fuzzy number described with a Gaussian membership function to express an individual’s fitness. Then, in order to compare different individuals, we generate a fitness interval based on α-cut set, and obtain the probability of individual dominance by use of the probability of interval dominance. Finally, we determine the superior individual in tournament selection with size two based on the probability of individual dominance, and perform the subsequent evolutions. We apply the proposed algorithm to a fashion evolutionary design system, a typical optimization problem with an implicit index, and compare it with two interactive genetic algorithms, i.e., an interactive genetic algorithm with an individual’s accurate fitness and an interactive genetic algorithm with an individual’s interval fitness. The experimental results show that the proposed algorithm is advantageous in alleviating user fatigue and looking for user’s satisfactory individuals.  相似文献   

13.
When solving real-world problems, often the main task is to find a proper representation for the candidate solutions. Strings of elementary data types with standard genetic operators may tend to create infeasible individuals during the search because of the discrete and often constrained search space. This article introduces a generally applicable representation for 2D combinatorial placement and packing problems. Empirical results are presented for two constrained placement problems, the facility layout problem and the generation of VLSI macro-cell layouts. For multiobjective optimization problems, common approaches often deal with the different objectives in different phases and thus are unable to efficiently solve the global problem. Due to a tree structured genotype representation and hybrid, problem-specific operators, the proposed approach is able to deal with different constraints and objectives in one optimization step  相似文献   

14.
When genetic algorithms are used to evolve decision trees, key tree quality parameters can be recursively computed and re-used across generations of partially similar decision trees. Simply storing instance indices at leaves is sufficient for fitness to be piecewise computed in a lossless fashion. We show the derivation of the (substantial) expected speedup on two bounding case problems and trace the attractive property of lossless fitness inheritance to the divide-and-conquer nature of decision trees. The theoretical results are supported by experimental evidence.  相似文献   

15.
《Computers & Structures》2007,85(19-20):1524-1533
The traditional genetic algorithms (GA) involve step-by-step numerical iterations for searching the minimum reliability index of a structural system, and therefore require a relatively long computation time. In practice the size of a design problem can be very large, the limit state functions are usually implicit in terms of the random variables. When using the traditional genetic algorithms, one can encounter problems with the immense effort required in coding ones own finite element code (or for integration with other commercial finite element software) when using the traditional genetic algorithms. For convenient practical applications of the GA in engineering, two new GA methods, namely, a hybrid GA method consisting of artificial neural network (ANN) and a hybrid GA method consisting of ANN and Monte Carlo simulation with importance sampling are proposed in the present study. A distinctive feature of these proposed methods is the introduction of an explicit approximate limit state function. The explicit formulation of the approximate limit state function is derived by using the parameters of the ANN model. By introducing the derived approximate limit state function, the failure probability can be easily calculated, practically when the limit state functions are not explicitly known. These proposed methods are investigated and their accuracy and efficiency are demonstrated using numerical examples. Finally, some important parameters in these proposed methods are also discussed.  相似文献   

16.
炼钢连铸作业计划的混合遗传优化与仿真分析   总被引:3,自引:0,他引:3       下载免费PDF全文
为提高炼钢连铸作业计划制定的效率和质量,面向生产工艺流程网络图,建立了一种基于遗传算法与蚁群算法相结合的混合智能优化方法,进行炼钢连铸生产作业计划的编制,并可实现常见扰动情况下的重计划制定;利用基于元胞自动机思想建立的炼钢连铸流程仿真模型,进行生产作业计划的仿真分析和评价。将计划编制模型与仿真模型有机结合,为作业计划的在线动态评价和自动调整提供了一种有效手段。针对某钢厂的仿真实验研究表明:提出的智能优化方法能较好地解决炼钢-连铸生产作业计划的时间不确定性优化问题,可快速生成炉次间作业无冲突的优化生产作业计划。  相似文献   

17.
针对粒子群算法在解空间盲目搜索的缺点,提出一种基于时变适应度函数的改进粒子群路径规划算法。该算法有效地将人类搜索经验与粒子群算法相结合,利用神经网络描述环境约束和距离信息,并构造粒子的适应度函数,从而该算法在迭代过程中可以利用权值的改变合理地调整适应度函数。这样,新算法在寻优过程中能够先确定路径方向,然后逐步提高路径安全性。将该算法应用于机器人路径规划,与标准的粒子群算法相比,数值仿真结果表明,改进算法具有较强的寻优能力和实时性。  相似文献   

18.
19.
Planning problems can be solved with a large variety of different approaches, and a significant amount of work has been devoted to the automation of planning processes using different kinds of methods. This paper focuses on the use of specific local search algorithms for real-world production planning based on experiments with real-world data, and presents an adapted local search guided by evolutionary metaheuristics. To make algorithms efficient, many specifics need to be considered and included in the problem solving. We demonstrate that the use of specialized local searches can significantly improve the convergence and efficiency of the algorithm. The paper also includes an experimental study of the efficiency of two memetic algorithms, and presents a real-world software implementation for the production planning.  相似文献   

20.
This paper proposes a hybrid genetic algorithm (a-hGA) with adaptive local search scheme. For designing the a-hGA, a local search technique is incorporated in the loop of genetic algorithm (GA), and whether or not the local search technique is used in the GA is automatically determined by the adaptive local search scheme. Two modes of adaptive local search schemes are developed in this paper. First mode is to use the conditional local search method that can measure the average fitness values obtained from the continuous two generations of the a-hGA, while second one is to apply the similarity coefficient method that can measure a similarity among the individuals of the population of the a-hGA. These two adaptive local search schemes are included in the a-hGA loop, respectively. Therefore, the a-hGA can be divided into two types: a-hGA1 and a-hGA2. To prove the efficiency of the a-hGA1 and a-hGA2, a canonical GA (cGA) and a hybrid GA (hGA) with local search technique and without any adaptive local search scheme are also presented. In numerical example, all the algorithms (cGA, hGA, a-hGA1 and a-hGA2) are tested and analyzed. Finally, the efficiency of the proposed a-hGA1 and a-hGA2 is proved by various measures of performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号