首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xie W  Tam SC  Lam YL  Liu J  Yang H  Gu J  Tan W 《Applied optics》2000,39(30):5482-5487
A fraction of pump power has been converted to TEM(00) mode laser power for a side-pumped solid-state laser by use of a space-dependent rate equation. We investigated the pump-to-mode (TEM(00)) ratio when scaling laser-diode side-pumped solid-state lasers to high-power levels by including the thermal effect in the space-dependent rate equation. Based on the assumption that Gaussian pump power is the same at any cross section of a laser rod, we resolved the output power with a space-dependent rate equation; temperature distribution in the laser rod was obtained; the optical path difference distribution was derived, and we estimated the diffraction losses that result from thermally induced spherical aberration by use of the Strehl intensity ratio. We determined that thermally induced diffraction losses are strongly dependent on pump power and on the pump-to-mode ratio.  相似文献   

2.
Misalignment effects of the Shack-Hartmann sensor   总被引:2,自引:0,他引:2  
The Shack-Hartmann sensor uses a microlens array and a CCD camera for wave-front measurements. To obtain wave-front measurements with high accuracy, an accurate relative alignment of both is essential. The different states of misalignment of the Shack-Hartmann sensor are divided into groups and are treated theoretically and experimentally. Their effect on the accuracy of wave-front measurements is evaluated. In addition, a practical method for proper alignment of the Shack-Hartmann sensor is proposed.  相似文献   

3.
We present a new wave-front sensing technique for adaptive optics based on use of several wave-front sensors dedicated to the sensing of a different range of spatial frequencies. We call it a hierarchical wave-front sensor. We present the concept of a hierarchical wave-front sensor and apply it to the Shack-Hartmann sensor. We show the gain that is expected with two Shack-Hartmann sensors. We obtain a gain that increases with the size of the largest sensor, and we detail the application of hierarchical wave-front sensing to extreme adaptive optics and extremely large telescopes.  相似文献   

4.
A wave-front sensing scheme based on placing a lenslet array at the focal plane of the telescope with each lenslet reimaging the aperture is analyzed. This wave-front sensing arrangement is the dual of the Shack-Hartmann sensor, with the wave front partitioned in the focal plane rather than in the aperture plane. This arrangement can be viewed as the generalization of the pyramid sensor and allows direct comparisons of this sensor with the Shack-Hartmann sensor. We show that, as with the Shack-Hartmann sensor, when subdividing in the focal plane, the quality of the wave-front estimate is a trade-off between the quality of the slope measurements over each region in the aperture and the resolution to which the slope measurements are obtained. Open-loop simulation results demonstrate that the performance of the lenslet array at the focal plane is equivalent to that of the Shack-Hartmann sensor when no modulation is applied to the lenslet array. However, when the array is modulated in a manner akin to that of the pyramid sensor, subdivision at the focal plane provides advantages when compared with the Shack-Hartmann sensor.  相似文献   

5.
Clare RM  Lane RG 《Applied optics》2004,43(20):4080-4087
A phase retrieval algorithm derived from subdivision of the complex field at the focal plane is proposed. This subdivision is achieved with a lenslet array at the focal plane in a manner similar to the pyramid wave-front sensor. The phase retrieval algorithm significantly improves the wave-front estimate that can be attained as a linear combination of the aperture images. This phase retrieval algorithm also avoids the twin-image stagnation problem inherent in phase retrieval and phase retrieval in conjunction with the Shack-Hartmann sensor.  相似文献   

6.
Ocular aberrations were measured in 71 eyes by using two reflectometric aberrometers, employing laser ray tracing (LRT) (60 eyes) and a Shack-Hartmann wave-front sensor (S-H) (11 eyes). In both techniques a point source is imaged on the retina (through different pupil positions in the LRT or a single position in the S-H). The aberrations are estimated by measuring the deviations of the retinal spot from the reference as the pupil is sampled (in LRT) or the deviations of a wave front as it emerges from the eye by means of a lenslet array (in the S-H). In this paper we studied the effect of different polarization configurations in the aberration measurements, including linearly polarized light and circularly polarized light in the illuminating channel and sampling light in the crossed or parallel orientations. In addition, completely depolarized light in the imaging channel was obtained from retinal lipofuscin autofluorescence. The intensity distribution of the retinal spots as a function of entry (for LRT) or exit pupil (for S-H) depends on the polarization configuration. These intensity patterns show bright corners and a dark area at the pupil center for crossed polarization, an approximately Gaussian distribution for parallel polarization and a homogeneous distribution for the autofluorescence case. However, the measured aberrations are independent of the polarization states. These results indicate that the differences in retardation across the pupil imposed by corneal birefringence do not produce significant phase delays compared with those produced by aberrations, at least within the accuracy of these techniques. In addition, differences in the recorded aerial images due to changes in polarization do not affect the aberration measurements in these reflectometric aberrometers.  相似文献   

7.
Jeong TM  Menon M  Yoon G 《Applied optics》2005,44(21):4523-4527
Lower- and higher-order wave-front aberrations of soft contact lenses were accurately measured with a Shack-Hartmann wave-front sensor. The soft contact lenses were placed in a wet cell filled with lens solution to prevent surface deformation and desiccation during measurements. Aberration measurements of conventional toric and multifocal soft contact lenses and a customized soft contact lens have proved that this method is reliable. A Shack-Hartmann wave-front sensor can be used to assess optical quality of both conventional and customized soft contact lenses and to assist in enhancing lens quality control.  相似文献   

8.
We present a new type of optical wave-front sensor: the sampling field sensor (SFS). The SFS attempts to solve the problem of real-time optical phase detection. It has a high space-bandwidth product and can be made compact and vibration insensitive. We describe a particular implementation of this sensor and compare it, through numerical simulations, with a more mature technique based on the Shack-Hartmann wave-front sensor. We also present experimental results for SFS phase estimation. Finally, we discuss the advantages and drawbacks of this SFS implementation and suggest alternative implementations.  相似文献   

9.
Wide, nonperiodic stepped phase structures are studied to correct various parameter-dependent wave-front aberrations in optical systems. The wide nature of these phase structures makes them easy to manufacture with sufficient compensation of the wave-front aberrations. Wave-front aberration correction for both continuous and discrete parameter variations are studied. An analytical method is derived for the discrete parameter variations to find the optimal phase structure. Both theoretical and experimental results show that these nonperiodic phase structures can be used to make (1) lenses athermal (defocus and spherical aberration compensated), (2) lenses achromatic, (3) lenses with a large field of view, (4) lenses with a reduced field curvature, and (5) digital versatile disk objective lenses for optical recording that are compatible with compact disk readout.  相似文献   

10.
Adaptive optics (AO) systems take sampled measurements of the wave-front phase. Because in the general case the spatial-frequency content of the phase aberration is not band limited, aliasing will occur. This aliasing will cause increased residual error and increased scattered light in the point-spread function (PSF). The spatially filtered wave-front sensor (SFWFS) mitigates this phenomenon by using a field stop at a focal plane before the wave-front sensor. This stop acts as a low-pass filter on the phase, significantly reducing the high-spatial-frequency content phase seen by the wave-front sensor at moderate to high Strehl ratios. We study the properties and performance of the SFWFS for open- and closed-loop correction of atmospheric turbulence, segmented-primary-mirror errors, and sensing with broadband light. In closed loop the filter reduces high-spatial-frequency phase power by a factor of 10(3) to 10(8). In a full AO-system simulation, this translates to a reduction by up to 625 times in the residual error power due to aliasing over a specific spatial frequency range. The final PSF (generated with apodization of the pupil) has up to a 100 times reduction in intensity out to lambda/2d.  相似文献   

11.
A Shack-Hartmann aberrometer was used to measure the monochromatic aberration structure along the primary line of sight of 200 cyclopleged, normal, healthy eyes from 100 individuals. Sphero-cylindrical refractive errors were corrected with ophthalmic spectacle lenses based on the results of a subjective refraction performed immediately prior to experimentation. Zernike expansions of the experimental wave-front aberration functions were used to determine aberration coefficients for a series of pupil diameters. The residual Zernike coefficients for defocus were not zero but varied systematically with pupil diameter and with the Zernike coefficient for spherical aberration in a way that maximizes visual acuity. We infer from these results that subjective best focus occurs when the area of the central, aberration-free region of the pupil is maximized. We found that the population averages of Zernike coefficients were nearly zero for all of the higher-order modes except spherical aberration. This result indicates that a hypothetical average eye representing the central tendency of the population is nearly free of aberrations, suggesting the possible influence of an emmetropization process or evolutionary pressure. However, for any individual eye the aberration coefficients were rarely zero for any Zernike mode. To first approximation, wave-front error fell exponentially with Zernike order and increased linearly with pupil area. On average, the total wave-front variance produced by higher-order aberrations was less than the wave-front variance of residual defocus and astigmatism. For example, the average amount of higher-order aberrations present for a 7.5-mm pupil was equivalent to the wave-front error produced by less than 1/4 diopter (D) of defocus. The largest pupil for which an eye may be considered diffraction-limited was 1.22 mm on average. Correlation of aberrations from the left and right eyes indicated the presence of significant bilateral symmetry. No evidence was found of a universal anatomical feature responsible for third-order optical aberrations. Using the Marechal criterion, we conclude that correction of the 12 largest principal components, or 14 largest Zernike modes, would be required to achieve diffraction-limited performance on average for a 6-mm pupil. Different methods of computing population averages provided upper and lower limits to the mean optical transfer function and mean point-spread function for our population of eyes.  相似文献   

12.
Analysis of optimal centroid estimation applied to Shack-Hartmann sensing   总被引:1,自引:0,他引:1  
Irwan R  Lane RG 《Applied optics》1999,38(32):6737-6743
The problem of estimating the centroid of an incoherently imaged point with a CCD array is analyzed. An exact analysis is presented that uses the actual short-exposure function at the CCD instead of the traditional Gaussian approximation. The analysis shows that, for Poisson noise, the centroid variance depends on the CCD size and that truncation effects play a significant part in determining the optimum CCD size. The effects of this on a wave-front reconstruction formed by a Shack-Hartmann sensor are described.  相似文献   

13.
A thermo-optical model describing the cavity stability and TEM00-mode volume of a repetitively pumped solid-state laser is developed and verified experimentally. The model predicts a maximum theoretical TEM00 Gaussian-mode radius in the laser rod. This maximum mode radius is caused by a bifocusing of the cavity mode and is present even in gain-polarized materials that nominally suppress the effect of birefringence on beam polarization. The mode limitation effect is not eliminated by conventional optics and is reduced only marginally by the often-described technique of placing a second identical laser head in the cavity. A maximum mode radius implies a fundamental limit on the TEM00-mode energy that can be extracted from a given laser cavity.  相似文献   

14.
The nonlinear response and strong coupling of control channels in micromachined membrane deformable mirror (MMDM) devices make it difficult for one to control the MMDM to obtain the desired mirror surface shapes. A closed-loop adaptive control algorithm is developed for a continuous-surface MMDM used for aberration compensation. The algorithm iteratively adjusts the control voltages of all electrodes to reduce the variance of the optical wave front measured with a Hartmann-Shack wave-front sensor. Zernike polynomials are used to represent the mirror surface shape as well as the optical wave front. An adaptive experimental system to compensate for the wave-front aberrations of a model eye has been built in which the developed adaptive mirror-control algorithm is used to control a deformable mirror with 19 active channels. The experimental results show that the algorithm can adaptively update control voltages to generate an optimum continuous mirror surface profile, compensating for the aberrations within the operating range of the deformable mirror.  相似文献   

15.
We performed a direct side-by-side comparison of a Shack-Hartmann wave-front sensor and a phase-shifting interferometer for the purpose of characterizing large optics. An expansion telescope of our own design allowed us to measure the surface figure of a 400-mm-square mirror with both instruments simultaneously. The Shack-Hartmann sensor produced data that closely matched the interferometer data over spatial scales appropriate for the lenslet spacing, and much of the <20-nm rms systematic difference between the two measurements was due to diffraction artifacts that were present in the interferometer data but not in the Shack-Hartmann sensor data. The results suggest that Shack-Hartmann sensors could replace phase-shifting interferometers for many applications, with particular advantages for large-optic metrology.  相似文献   

16.
Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.  相似文献   

17.
Viard E  Le LM  Hubin N 《Applied optics》2002,41(1):11-20
We study the performance of an adaptive optics (AO) system with four laser guide stars (LGSs) and a natural guide star (NGS). The residual cone effect with four LGSs is obtained by a numerical simulation. This method allows the adaptive optics system to be extended toward the visible part of the spectrum without tomographic reconstruction of three-dimensional atmospheric perturbations, resolving the cone effect in the visible. Diffraction-limited images are obtained with 17-arc ms precision in median atmospheric conditions at wavelengths longer than 600 nm. The gain achievable with such a system operated on an existing AO system is studied. For comparison, performance in terms of achievable Strehl ratio is also computed for a reasonable system composed of a 40 x 40 Shack-Hartmann wave-front sensor optimized for the I band. Typical errors of a NGS wave front are computed by use of analytical formulas. With the NGS errors and the cone effect, the Strehl ratio can reach 0.45 at 1.25 microm under good-seeing conditions with the Nasmyth Adaptive Optics System (NAOS; a 14 x 14 subpupil wave-front sensor) at the Very Large Telescope and 0.8 with a 40 x 40 Shack-Hartmann wave-front sensor.  相似文献   

18.
Lee J  Shack RV  Descour MR 《Applied optics》2005,44(23):4838-4845
We propose a simple and powerful algorithm to extend the dynamic range of a Shack-Hartmann wave-front sensor. In a conventional Shack-Hartmann wave-front sensor the dynamic range is limited by the f-number of a lenslet, because the focal spot is required to remain in the area confined by the single lenslet. The sorting method proposed here eliminates such a limitation and extends the dynamic range by tagging each spot in a special sequence. Since the sorting method is a simple algorithm that does not change the measurement configuration, there is no requirement for extra hardware, multiple measurements, or complicated algorithms. We not only present the theory and a calculation example of the sorting method but also actually implement measurement of a highly aberrated wave front from nonrotational symmetric optics.  相似文献   

19.
A new adaptive wave-front control technique and system architectures that offer fast adaptation convergence even for high-resolution adaptive optics is described. This technique is referred to as decoupled stochastic parallel gradient descent (D-SPGD). D-SPGD is based on stochastic parallel gradient descent optimization of performance metrics that depend on wave-front sensor data. The fast convergence rate is achieved through partial decoupling of the adaptive system's control channels by incorporating spatially distributed information from a wave-front sensor into the model-free optimization technique. D-SPGD wave-front phase control can be applied to a general class of adaptive optical systems. The efficiency of this approach is analyzed numerically by considering compensation of atmospheric-turbulence-induced phase distortions with use of both low-resolution (127 control channels) and high-resolution (256 x 256 control channels) adaptive systems. Results demonstrate that phase distortion compensation can be achieved during only 10-20 iterations. The efficiency of adaptive wave-front correction with D-SPGD is practically independent of system resolution.  相似文献   

20.
It is fairly well established that the higher-order aberrations of the eye fluctuate over relatively short time periods, but as yet there is no conclusive evidence regarding the origin of these fluctuations. We measured the aberrations and the pulse pressure wave simultaneously for five subjects. The aberrations were measured by using a Shack-Hartmann sensor sampling at 21.2 Hz. We decomposed the aberration data into Zernike coefficients up to and including fifth order and also calculated the rms wave-front error. From the pulse data the heart rate variability signal was also derived. Coherence function analysis showed that for all subjects there was a weak correlation between many of the aberrations and the pulse and the derived heart rate variability. The pulse and the heart rate variability can account for only 11% +/- 2% and 20% +/- 2%, respectively, of the aberration dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号