首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 148 毫秒
1.
为了探明钢弹簧浮置板轨道区段波磨发生机理及与轮轨系统参数影响规律。首先基于现场测试的钢轨波磨特征,分析波磨典型波长及其通过频率;其次建立轮对和钢弹簧浮置板轨道三维有限元模型,分析轮轨共振模态与浮置板轨道钢轨导纳特性,探讨钢轨扣件刚度、浮置板隔振器刚度与轮对振动模态对钢弹簧浮置板区段钢轨波磨的影响规律。结果表明(:1)钢轨扣件刚度对波磨发生和发展有重要的影响。钢轨扣件刚度越低,将激发钢轨较大的振动,在特定频段上过大的钢轨振动会导致对应波长的波磨加剧,进而加速波磨的发展。(2)从轮轨系统模态分析,358 Hz的钢轨横向弯曲变形频率与测试线路产生特征波长为31.7 mm波磨引起的轮轨振动频率较为接近;可通过采取减振措施来抑制轮轨系统在358 Hz处的横向振动响应,会相应地减缓钢轨磨耗。  相似文献   

2.
轨道交通运行引起的地面振动或高架轨道的高架桥结构振动源于轨道结构振动,对于几十赫兹到几百赫兹频率范围的轨道结构振动,应用轨道减振器、弹性支承块和浮置板可以得到比较好的减振降噪效果。本文在频域建立了轨道结构模型和车辆一轨道系统相对位移激励模型,分析计算了钢轨垫片/轨道减振器一弹性支承块/浮置板轨道结构的隔振性能,以及相对位移激励下轮轨间动载荷和传递给基础的力。结果表明,与垫片一弹性支承块/浮置板轨道相比,轨道减振器一弹性支承块/浮置板轨道组合可以在中频范围大大降低轮轨动态作用力,并且在中、高频段具有更好的隔振性能。  相似文献   

3.
计算分析浮置板参数对噪声和振动的关系,为浮置板参数的工程设计提供参考.以考虑不平顺度的轮轨振动模型为基础,采用ANSYS有限元分析软件,模拟列车动载荷作用下浮置板轨道结构的瞬态响应.分别对不同的浮置板隔振器刚度和阻尼进行计算分析,确定其参数对振动和噪声的影响.计算分析表明,浮置板轨道结构对减小振动和噪声十分有效,其刚度和阻尼参数对减小轨道振动和基础反力有不同的效果.  相似文献   

4.
为探究钢弹簧浮置板轨道在市域快线中的适用性,有效模拟市域列车与浮置板轨道之间的动态相互作用,进行浮置板轨道结构的参数优化分析。基于车辆?轨道耦合动力学理论,建立 CRH6 动车?预制钢弹簧浮置板轨道耦合动力学模型,该模型将车辆视为由车身、车架和轮组组成的多刚体系统,考虑了各部分的横向、纵向、侧滚、摇头和点头运动。将钢轨视为弹性点支承的伯努利?欧拉梁,根据实际扣件节点间距布置钢轨支撑点,考虑左右钢轨的垂向、侧向和转动自由度。将浮置板的垂直方向视为弹性地基上的双向弯曲弹性板,水平方向视为刚体,考虑其平移和转动自由。考虑混凝土基础为弹性基础上的双向弯曲弹性板。轮轨之间的法向力由赫兹非线性弹性接触理论确定,切向力由非线性蠕变理论确定。研究表明,传统上用于低速线路的预制钢弹簧浮置板式轨道实际上可以用于市域快线乃至市域快线领域,预制式钢弹簧浮置板轨道可以在满足列车运营安全的前提下达到显著的减振效果。侧置式隔振器的发明是提高浮置板轨道稳定性的新探索,相比传统单纯增加浮置板轨道厚度,进而提高轨道质量并提升其稳定性的做法,采用浮置板侧置隔振器无疑是经济而有效的。因此,该预制式钢弹簧浮置板轨道能够满足市域快线高速行车的要求,同时研究成果可为时速 160 km 预制钢弹簧浮置板道床的动力学设计提供支撑。  相似文献   

5.
为了降低轨道交通中高架桥结构的振动和二次噪声,应减少由轨道传递到高架桥结构的振动能量。结合车辆-轨道解析模型和高架桥有限元模型建立了频率域的车辆-轨道-高架桥垂向耦合模型,通过仿真计算分析了轮轨不平顺谱激励下传递到高架桥结构的振动功率流及参数影响。结果表明:对于整体道床轨道,钢轨扣件在高于车轮-轨道系统固有频率的频段具有隔振效果;钢轨扣件刚度减小10倍,则传递到高架桥的总振动功率级降低约10dB;钢轨垫片阻尼增加一倍,传递到高架桥的总振动功率级降低约1.3dB;车辆速度提高一倍,传递到高架桥的总振动功率级增加约6.6dB。  相似文献   

6.
为了探究高架线路上钢弹簧浮置板减振轨道在外激励作用下的振动特性,建立了钢弹簧浮置板减振轨道-箱梁桥三维有限元模型,以美国六级谱激励下的轮轨力作为输入,对钢弹簧浮置板减振轨道的振动特性进行了系统的研究;在此基础上,分析了不同刚度的钢弹簧对在整体轨道结构振动的影响。研究结果表明:浮置板结构的振动特性以纵向上的弯曲振动为主,同时存在不均匀分布的局部振动特性,因此利用三维有限元模型才能很好的研究浮置板结构的整体和局部振动特性。整体轨道结构在中低频段的振动明显,其中钢轨的主振频率集中在200-250Hz以及425-475Hz;浮置板在150Hz以下的低频段振动密集,主振频段与钢轨一致,但在425-475Hz的振动幅值与低频段相近;浮置板在主振频段的弯曲振动不是规则的同幅值正弦形式,其幅值呈逐渐递增或递减分布。钢弹簧刚度对钢轨50Hz以下的振动频率分布有一定的影响;主要影响浮置板结构的整体振动形式,在频率较低时对振动幅值及局部振动形式也有较大的影响。  相似文献   

7.
为研究地铁浮置板轨道(FST)钢弹簧隔振器的垂向动反力(DRF)的随机性特征,采用有限元法与虚拟激励法(PEM),建立了列车-浮置板轨道(T-FST)耦合系统垂向随机振动计算模型。采用多刚体动力学建立列车模型;采用有限元方法建立浮置板轨道有限元模型;基于等效Hertz线性轮轨接触关系建立列车-浮置板轨道耦合系统动力学方程。通过虚拟激励法将非平稳随机振动问题转化为确定性时间历程问题,推导了列车-浮置板轨道耦合时变系统随机振动计算模型。基于该模型,计算研究了钢弹簧隔振器垂向动反力的随机特征。研究表明:钢弹簧隔振器动反力受列车轴重引起的确定性激励控制,轨道不平顺随机激励对钢弹簧隔振器动反力影响较小;不同轨道不平顺对钢弹簧隔振器动反力功率谱主频分布影响不显著;钢弹簧隔振器动反力统计参数随着车速的增大而增大。  相似文献   

8.
为确定城市轨道交通减振轨道的合理刚度,建立了车辆-轨道耦合动力学模型,计算了3~200 kN/mm钢轨支座刚度及3~6级不平顺谱工况下轨道的动力响应。通过小波包分析对系统振动速度、加速度信号的能量特性进行了处理,获得了轨道振动能量随钢轨支座刚度及不平顺的变化规律,最后以轨道系统总能量最低为标准,提出了城市轨道交通减振轨道最优刚度建议值。结果表明:轨道速度信号能量随钢轨支座刚度单调递减;轨道加速度信号能量随钢轨支座刚度先减小后增大;高刚度轨道对不平顺敏感,不平顺的增大会加剧轮轨振动;城市轨道交通减振轨道钢轨支座刚度最优值为5~10 kN/mm,可通过扣件减振措施与枕下减振措施组合实现,钢弹簧浮置板道床措施适用范围最广。  相似文献   

9.
为了准确研究高频激励下的车辆振动响应,综合考虑了车辆主要部件和轨道弹性振动的影响。对于车辆模型,采用刚柔耦合动力学理论来模拟车体、构架、轴箱和轮对;轨道模型包括基于Timoshenko梁模型的弹性钢轨和基于有限元理论和模态叠加法的轨道板。通过采用单一正弦函数来描述轨道波磨不平顺,分析了钢轨波磨激励对车辆系统动态响应的影响,同时调查了车速、钢轨波磨波长和波深对车辆系统振动响应的影响规律。结果表明:在钢轨波磨作用下,轮轨相互作用力和车辆系统响应均出现了周期性波动;轮轨力随着速度的增加先缓慢增加,再急剧增加,最后又保持缓慢增长趋势;钢轨波磨在一定速度下能导致构架端部和轴箱端盖发生比较严重的弹性振动;轮轨力随着钢轨波磨波深的增加而变大,随着其波长的增加而减小。  相似文献   

10.
为了探究高架线路上钢弹簧浮置板减振轨道在外激励作用下的振动特性,建立钢弹簧浮置板减振轨道-箱梁桥三维有限元模型,以美国六级谱激励下的轮轨力作为输入,对钢弹簧浮置板减振轨道的振动特性进行系统的研究;在此基础上,分析不同刚度的钢弹簧对整体轨道结构振动的影响。研究结果表明:浮置板结构的振动特性以纵向上的弯曲振动为主,同时存在不均匀分布的局部振动特性,因此只有利用三维有限元模型才能很好地研究浮置板结构的整体和局部振动特性。整体轨道结构在中低频段的振动明显,其中钢轨的主振频率集中在200 Hz~250 Hz以及425 Hz~475 Hz;浮置板在150 Hz以下的低频段振动密集,主振频段与钢轨一致,但在425 Hz~475 Hz的振动幅值与低频段相近;浮置板在主振频段的弯曲振动不是规则的同幅值正弦形式,其幅值呈逐渐递增或递减分布。钢弹簧刚度对钢轨50 Hz以下的振动频率分布有一定的影响;主要影响浮置板结构的整体振动形式,在频率较低时对振动幅值及局部振动形式也有较大的影响。  相似文献   

11.
移动谐振荷载作用下浮置板轨道的动力响应   总被引:1,自引:0,他引:1  
马龙祥  刘维宁  刘卫丰 《工程力学》2012,29(12):334-341
在移动谐振荷载作用下,依据周期结构响应的性质,将无限长浮置板轨道响应的问题求解转化到在一块浮置板长度范围内进行,并通过浮置板的位移影响矩阵在频域内实现了钢轨和不连续浮置板的耦合,求得了该范围内钢轨的动力响应,进而以此为基础求得了轨道结构上任意一点的动力响应。结果表明:移动谐振荷载作用下,在移动荷载自身激振频率附近,浮置板轨道位移响应频谱达到峰值;随着移动谐振荷载速度的增大,在频谱上,荷载自身激振频率附近很窄的频段位移响应会有所下降,而在其他大部分频段位移响应会有显著增加;当谐振荷载激振频率与浮置板轨道的固有频率一致时,发生共振现象,在频谱上位移响应的峰值远远大于其他激振频率时响应的峰值;浮置板轨道在移动荷载作用下,存在由荷载周期通过不连续浮置板和扣件而引发的参数激励;当移动谐振荷载激振频率接近有限长浮置板形成驻波的频率时,轨道结构也会产生较大的位移响应。  相似文献   

12.
轨道刚度对高速轮轨系统振动噪声的影响   总被引:2,自引:0,他引:2  
高速铁路对环境的噪声污染是一个不可忽视的问题,在已建立的轮轨滚动噪声预测模型的基础上,以板式轨道为对象,研究了在轮轨表面粗糙度(随机短波激扰)的激励下,轨道刚度变化对高速轮轨系统振动及轮轨噪声的影响.结果表明:降低轨道刚度,可以有效降低轮轨系统400Hz以下频率的振动,但对400Hz以上的振动基本无影响,从而,对轮轨噪声也基本无影响.  相似文献   

13.
阻尼钢弹簧浮置板轨道结构已证实是一种有效的减振降噪轨道结构。为分析其隔振性能,通过建立阻尼钢弹簧浮置板轨道结构动力分析模型,对其进行谐响应分析,模拟列车运行时轮轨间实际冲击,研究其在简谐激励下的动力传递特性,并分别考虑浮置板长度、隔振器刚度和阻尼,以及不同载荷作用位置对浮置板隔振性能的影响。计算和分析对于今后轨道结构的进一步改善具有参考的价值。  相似文献   

14.
为了实现对地铁低频环境振动的控制,提出了一种基于TID(Tuned inerter damper,调谐惯容阻尼器)的浮置板板下隔振器,并以此形成新型浮置板轨道结构。分别探究了TID隔振器浮置板轨道的低频弹性波传播特性、简谐点荷载作用下振动特性以及列车荷载作用下减振效果;结合多目标遗传算法,开展了TID参数优化分析。结果表明:TID的引入使得传统钢弹簧浮置板新增弯曲波带隙,实现了对板内弹性波的调控;浮置板低频共振所致的振动放大问题得到较大改善。TID隔振器浮置板轨道在4 Hz~16 Hz频率范围内的减振效果得以提升,浮置板振动响应也得到减弱。  相似文献   

15.
针对在建杭州地铁3号线下穿某文教区工程,根据车辆-轨道耦合动力学理论,分别建立车辆-普通整体道床轨道耦合动力学模型和车辆-钢弹簧浮置板轨道耦合动力学模型.基于赫兹非线性接触关系,实现轮轨间的力平衡和位移协调.利用有限元软件ABAQUS,对两种轨道结构模型的动力响应进行计算,研究轮轨耦合动力相互作用机理和轨道振动源强特性...  相似文献   

16.
建立带有钢轨吸振器的高速铁路高架结构板式轨道与桥梁垂向耦合振动模型,分析钢轨吸振器对轨道和桥梁结构垂向振动的影响。模型已考虑了钢轨吸振器、板式轨道结构及桥梁间的耦合作用。钢轨吸振器被视为两自由度的质量-弹簧系统,钢轨、轨道板和桥梁被视为多层叠合梁模型,彼此用弹簧阻尼元件联接。利用动柔度函数,得到吸振器-板式轨道-桥梁系统垂向振动响应的解析表达式,并以轮轨表面粗糙度谱作为激励求解模型的振动响应。研究结果表明:钢轨吸振器在180 Hz~300 Hz及700 Hz~1 000 Hz频段内对整个高架轨道系统的位移幅值及相位、振动衰减产生较明显的影响;同时,在轮轨表面粗糙度谱的激励下,带有钢轨吸振器的轮轨系统的轮轨力在pinned-pinned频率处明显减小,在前两阶自振主频附近钢轨吸振器对整个高架轨道系统结构振动的影响较明显。  相似文献   

17.
研究了动力吸振器对轮轨动力作用下浮置板轨道低频振动的控制特性。首先基于动力吸振器定点理论以及多自由度系统等价质量识别法,并通过对浮置板轨道进行模态分析,确定了浮置板附加动力吸振器的最优刚度、最优阻尼和最优附加位置;然后对浮置板轨道进行简谐响应分析,探讨了控制浮置板各阶模态振动的动力吸振器在不同质量比下的吸振特性;最后基于车辆-轨道耦合动力学模型,研究了列车动荷载作用下动力吸振器对浮置板轨道低频振动的控制特性。结果表明:动力吸振器能够有效地吸收浮置板轨道的固有频率附近的低频振动能量;动力吸振器的质量比越大,其吸振效果越明显;合理的吸振器设置能够有效地控制列车动荷载下浮置板低频振动及对应频段钢弹簧支反力向下部基础的传递。  相似文献   

18.
为探讨钢弹簧刚度和浮置板密度对高架钢弹簧浮置板轨道减振特性的影响规律,构建车辆-浮置板轨道-桥梁耦合模型,从时频域的角度对其进行分析,为钢弹簧浮置板轨道的设计参数的合理选择与组合优化提供理论依据。研究结果表明:在2 Hz~20 Hz范围内浮置板的振动水平随钢弹簧刚度的减小而增大。在16 Hz~125 Hz频率范围内,轨道中心线、翼缘、腹板、梁底的振动水平随着钢弹簧刚度的减小而减小,最大减幅达到13 dB。钢弹簧刚度的变化对传递函数的影响比较明显,弹簧刚度越小,浮置板到桥梁结构的竖向传递函数值越小。综合考虑,在设计浮置板轨道结构时建议将钢弹簧的刚度控制在6×106N/m~8×106N/m。浮置板密度的增大会在一定程度上减小系统的振动水平,实际设计中要合理设置浮置板密度,建议控制在2 800 kg/m3~3 200 kg/m3。  相似文献   

19.
在电机轴悬式机车-轨道垂向耦合动力学模型的基础上,考虑了机车的纵向运动自由度,通过对比牵引工况下考虑和不考虑轨道弹性时的轮轨作用力及轮对振动加速度,得到了轨道弹性变形对轮对轮轨切向力及其纵向振动的影响规律。研究结果表明,当轮轨界面无不平顺激扰时,考虑或忽略轨道结构的弹性对轮对牵引力的发挥及纵向振动影响不大;在不平顺激扰下,轨道结构参与轮轨间的耦合振动,由于轨道垂向的弹性及阻尼作用,轮轨垂向力特别是高频力得到缓冲及衰减,致使50Hz以上高频段的轮轨切向力及轮对纵向振动变的缓和,利于轮周牵引力的稳定发挥。总体上,分析模型中若不考虑轨道弹性会造成预测的轮轨切向力及轮对振动加速度偏大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号