首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
土壤湿度是气象学、气候学研究领域的重要环境因子和过程参数。AMSR-E可提供全球范围的较长时序的卫星反演土壤湿度产品,将ECWMF和NECP再分析资料与AMSR-E土壤湿度产品进行时空比较,在评价三者一致性的同时对AMSR-E土壤湿度进行检验,并进一步使用站点观测资料(土壤湿度、降水量)对中国区域的AMSR-E、ECWMF以及NECP土壤湿度进行检验。结果表明:全球及中国区域AMSR-E、ECWMF与NECP土壤湿度空间分布特征一致性较好,但与ECWMF、NCEP相比AMSR-E土壤湿度在数值上明显偏小,尤其当AMSR-E土壤湿度数值较小时,与另两者的差距较大;三者土壤湿度均与降水量有较好的对应关系,比较而言,ECWMF和NECP土壤湿度与降水量的对应关系更好;与站点土壤湿度相比,ECWMF和NECP土壤湿度偏大,AMSR-E土壤湿度偏小,全国范围内2009年159个站点统计结果显示:ECWMF、NECP与站点的均方根误差(0.107、0.124)小于AMSR-E的均方根误差(0.127)。  相似文献   

2.
Field experiments were conducted in synchronous with Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) passes over the Kuwait desert covering one pixel of 25 km circular diameter. Forty-five soil samples were collected within a pixel resolution to estimate the effective soil moisture, and nine such campaigns were conducted during the period December 2005 to March 2006. Field-estimated soil moisture values up to 5 cm depth were compared with AMSR-E soil moisture values and our model results. It was observed that the field soil moisture values are consistently lower than AMSR-E and our model values. However, the difference is within the errors. AMSR-E soil moisture and our model values agree with each other. Monthly average soil moisture maps of Kuwait were generated from AMSR-E data to study the temporal and spatial variability of soil moisture. It is observed that the maximum soil moisture during January is about 10%, and most of the year the values are about 5% soil moisture.  相似文献   

3.
A new methodology to derive the spatial distribution of clay pans from satellite microwave data is presented. Soil moisture has a different temporal signature in clay pans compared with other soils, which is directly reflected in the satellite-observed brightness temperatures. Three years of Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) 6.9 GHz microwave observations were compiled and analysed over continental Australia to identify clay pans. This led to the development of a brightness temperature variance index (BTVI), which shows a strong spatial correspondence to an existing soil texture map and the ability to map clay pans for semi-arid regions. This simple method emphasizes the potential use of passive microwave remote sensing for soil type mapping.  相似文献   

4.
AMSR-E has been extensively evaluated under a wide range of ground and climate conditions using in situ and aircraft data, where the latter were primarily used for assessing the TB calibration accuracy. However, none of the previous work evaluates AMSR-E performance under the conditions of flood irrigation or other forms of standing water. Also, it should be mentioned that global soil moisture retrievals from AMSR-E typically utilize X-band data. Here, C-band based AMSR-E soil moisture estimates are evaluated using 1 km resolution retrievals derived from L-band aircraft data collected during the National Airborne Field Experiment (NAFE'06) field campaign in November 2006. NAFE'06 was conducted in the Murrumbidgee catchment area in southeastern Australia, which offers diverse ground conditions, including extensive areas with dryland, irrigation, and rice fields. The data allowed us to examine the impact of irrigation and standing water on the accuracy of satellite-derived soil moisture estimates from AMSR-E using passive microwave remote sensing. It was expected that in fields with standing water, the satellite estimates would have a lower accuracy as compared to soil moisture values over the rest of the domain. Results showed sensitivity of the AMSR-E to changes in soil moisture caused by both precipitation and irrigation, as well as good spatial (average R = 0.92 and RMSD = 0.049 m3/m3) and temporal (R = 0.94 and RMSD = 0.04 m3/m3) agreement between the satellite and aircraft soil moisture retrievals; however, under the NAFE'06 ground conditions, the satellite retrievals consistently overestimated the soil moisture conditions compared to the aircraft.  相似文献   

5.
Soil moisture is a very important boundary parameter in numerical weather prediction at different spatial and temporal scales, controlling the exchange of water and energy between the atmosphere and land surface. Satellite-based microwave radiometric observations are considered to be the best for soil moisture remote sensing because of their high sensitivity, as well as their all-weather and day–night observation capabilities with high repeativity. In this study, an attempt has been made to assess the Advanced Microwave Scanning Radiometer--Earth Observing System (AMSR-EOS) soil moisture product over India. The AMSR-E soil moisture product has been assessed using in situ soil moisture observations made by the India Meteorological Department (IMD) during the monsoon period (May–August) for the years 2002–2006 over 18 meteorological stations. Apart from assessing AMSR-E soil moisture retrieval accuracy, this study also investigates the effect of vegetation, topography and coastal water contamination, and determines the regions where the AMSR-E soil moisture product could be useful for different applications.  相似文献   

6.
Intercomparisons of microwave-based soil moisture products from active ASCAT (Advanced Scatterometer) and passive AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing System) is conducted based on surface soil moisture (SSM) simulations from the eco-hydrological model, Vegetation Interface Processes (VIP), after it is carefully validated with in situ measurements over the North China Plain. Correlations with VIP SSM simulation are generally satisfactory with average values of 0.71 for ASCAT and 0.47 for AMSR-E during 2007–2009. ASCAT and AMSR-E present unbiased errors of 0.044 and 0.053 m3 m?3 on average, with respect to model simulation. The empirical orthogonal functions (EOF) analysis results illustrate that AMSR-E provides more consistent SSM spatial structure with VIP than ASCAT; while ASCAT is more capable of capturing SSM temporal dynamics. This is supported by the facts that ASCAT has more consistent expansion coefficients corresponding to primary EOF mode with VIP (R = 0.825, p < 0.1). However, comparison based on SSM anomaly demonstrates that AMSR-E and ASCAT have similar skill in capturing SSM short-term variability. Temporal analysis of SSM anomaly time series shows that AMSR-E provides best performance in autumn, while ASCAT provides lower anomaly bias during highly-vegetated summer with vegetation optical depth of 0.61. Moreover, ASCAT retrieval accuracy is less influenced by vegetation cover, as it is in relatively better agreement with VIP simulation in forest than in other land-use types and exhibits smaller interannual fluctuation than AMSR-E. Identification of the error characteristics of these two microwave soil moisture data sets will be helpful for correctly interpreting the data products and also facilitate optimal specification of the error matrix in data assimilation at a regional scale.  相似文献   

7.
Soil moisture mapping and AMSR-E validation using the PSR in SMEX02   总被引:5,自引:0,他引:5  
Field experiments (SMEX02) were conducted to evaluate the effects of dense agricultural crop conditions on soil moisture retrieval using passive microwave remote sensing. Aircraft observations were collected using a new version of the Polarimetric Scanning Radiometer (PSR) that provided four C band and four X band frequencies. Observations were also available from the Aqua satellite Advanced Microwave Scanning Radiometer (AMSR-E) at these same frequencies. SMEX02 was conducted over a three-week period during the summer near Ames, Iowa. Corn and soybeans dominate the region. During the study period the corn was approaching its peak water content state and the soybeans were at the mid point of the growth cycle. Aircraft observations are compared to ground observations. Subsequently models are developed to describe the effects of corn and soybeans on soil moisture retrieval. Multiple altitude aircraft brightness temperatures were compared to AMSR-E observations to understand brightness temperature scaling and provide validation. The X-band observations from the two sensors were in reasonable agreement. The AMSR-E C-band observations were contaminated with anthropogenic RFI, which made comparison to the PSR invalid. Aircraft data along with ancillary data were used in a retrieval algorithm to map soil moisture. The PSR estimated soil moisture retrievals on a field-by-field comparison had a standard error of estimate (SEE) of 5.5%. The error reduced when high altitude soil moisture estimates were aggregated to 25 km resolution (same as AMSR-E EASE grid product resolution) (SEE ∼ 2.85%). These soil moisture products provide a validation of the AMSR retrievals. PSR/CX soil moisture images show spatial and temporal patterns consistent with meteorological and soil conditions. The dynamic range of the PSR/CX observations indicates that reasonable soil moisture estimates can be obtained from AMSR, even in areas of high vegetation biomass content (∼ 4-8 kg/m2).  相似文献   

8.
An operational global soil moisture data product is currently generated from the observations of the Advanced Microwave Scanning Radiometer (AMSR-E) aboard NASA's Aqua satellite using the retrieval procedure described in Njoku and Chan [Njoku, E.G. and Chan, S.K., 2006. Vegetation and surface roughness effects on AMSR-E land observations, remote sensing environment, 100(2), 190-199]. We have generated another soil moisture dataset from the same AMSR-E observed brightness temperature data using the Land Surface Microwave Emission Model (LSMEM) adopting a different estimation method. This paper focuses on a comparison study of soil moisture estimates from the above two methods. The soil moisture data from current AMSR-E product and LSMEM are compared with the in-situ measured soil moisture datasets over the Little River Experimental Watershed (LREW), Georgia, USA for the year 2003. The comparison study was carried out separately for the AMSR-E daytime and night time overpasses. The LSMEM method performed better than the current operational AMSR-E retrieval algorithm in this study. The differences between the AMSR-E and LSMEM results are mostly due to differences in various simplifications and assumptions made for variables in the radiative transfer equations and the soil and vegetation based physical models and the accuracy of the input surface temperature datasets for the LSMEM forward model approach. This study confirms that remote sensing data have the potential to provide useful hydrologic information, but the accuracy of the geophysical parameters could vary depending on the estimation methods. It cannot be concluded from this study whether the soil moisture estimation by the LSMEM approach will perform better in other geographic, climatic or topographic conditions. Nevertheless, this study sheds light on the effects of different approaches for the estimation of geophysical parameters, which may be useful for current and future satellite missions.  相似文献   

9.
As soil moisture increases, slope stability decreases. Remotely sensed soil moisture data can provide routine updates of slope conditions necessary for landslide predictions. For regional scale landslide investigations, only remote-sensing methods have the spatial and temporal resolution required to map hazard increases. Here, a dynamic physically-based slope stability model that requires soil moisture is applied using remote-sensing products from multiple Earth observing platforms. The resulting landslide susceptibility maps using the advanced microwave scanning radiometer (AMSR-E) surface soil moisture are compared to those created using variable infiltration capacity (VIC-3L) modeled soil moisture at Cleveland Corral landslide area in California, US. Despite snow cover influences on AMSR-E surface soil moisture estimates, a good relationship between the downscaled AMSR-E's surface soil moisture and the VIC-3L modeled soil moisture is evident. The AMSR-E soil moisture mean (0.17 cm3/cm3) and standard deviation (0.02 cm3/cm3) are very close to the mean (0.21 cm3/cm3) and standard deviation (0.09 cm3/cm3) estimated by VIC-3L model. Qualitative results show that the location and extent of landslide prone regions are quite similar. Under the maximum saturation scenario, 0.42% and 0.49% of the study area were highly susceptible using AMSR-E and VIC-3L model soil moisture, respectively.  相似文献   

10.
Vegetation and surface roughness effects on AMSR-E land observations   总被引:7,自引:0,他引:7  
Characteristics of the land surface including soil moisture, vegetation cover, and soil roughness among others influence the microwave emissivity and brightness temperature of the surface as observed from space. Knowledge of the variability of microwave signatures of vegetation and soil roughness is necessary to separate these influences from those of soil moisture for remote sensing applications to global hydrology and climate. We describe here a characterization of vegetation and soil roughness at the frequencies and spatial resolution of the EOS Aqua Advanced Microwave Scanning Radiometer (AMSR-E). A single parameter has been used to approximate the combined effects of vegetation and roughness. AMSR-E data have been analyzed to determine the frequency dependence of this parameter and to generate a global vegetation/roughness map and an estimate of seasonal variability. A physical model is used for the analysis with approximations appropriate to the AMSR-E footprint scale and coefficients calibrated empirically against the AMSR-E data. The spatial variabilities of roughness and vegetation cannot be estimated independently using this approach, but their temporal dynamics allow separation of predominantly static roughness effects from time-varying vegetation effects using multitemporal analysis. Global signals of time-varying vegetation water content derived from this analysis of AMSR-E data are consistent with time-varying biomass estimates obtained by optical/infrared remote sensing techniques.  相似文献   

11.
The backscattering and emission measured simultaneously by radar and radiometer show promise for the estimation of surface variables such as near-surface soil moisture and vegetation characteristics. In this paper, the 10.7 GHz Tropical Rainfall Measuring Mission (TRMM) microwave imager (TMI) channel and 13.8 GHz precipitation radar (PR) observations are simultaneously used for the estimation of the near-surface soil moisture and vegetation properties. The Fresnel model for soil and a simple model for vegetation are used to simulate the passive microwave emission at 10.7 GHz. To determine the PR backscatter signal from a land surface, a theoretical approach is used based on the Geometric Optics Model for simulating bare soil and a semi-empirical water-cloud model for vegetation. The model parameters required in specifying the nature of the soil and vegetation are calibrated on the basis of in situ soil moisture data combined with remotely sensed observations. The calibrated model is subsequently used to retrieve near-surface soil moisture and leaf area index for assumed values of surface roughness and temperature. Algorithm assessment using synthetic passive and active microwave data shows a nonlinearity effect in the system inversion, which results in a varying degree of error statistics in soil wetness and vegetation characteristics retrieval. The technique was applied on TRMM radar/radiometer observations from three consecutive years and evaluated against in situ near-surface (5 cm) soil moisture measurements from the Oklahoma Mesonet showing a consistent performance.  相似文献   

12.
Global soil moisture products retrieved from various remote sensing sensors are becoming readily available with a nearly daily temporal resolution. Active and passive microwave sensors are generally considered as the best technologies for retrieving soil moisture from space. The Advanced Microwave Scanning Radiometer for the Earth observing system (AMSR-E) on-board the Aqua satellite and the Advanced SCATterometer (ASCAT) on-board the MetOp (Meteorological Operational) satellite are among the sensors most widely used for soil moisture retrieval in the last years. However, due to differences in the spatial resolution, observation depths and measurement uncertainties, validation of satellite data with in situ observations and/or modelled data is not straightforward. In this study, a comprehensive assessment of the reliability of soil moisture estimations from the ASCAT and AMSR-E sensors is carried out by using observed and modelled soil moisture data over 17 sites located in 4 countries across Europe (Italy, Spain, France and Luxembourg). As regards satellite data, products generated by implementing three different algorithms with AMSR-E data are considered: (i) the Land Parameter Retrieval Model, LPRM, (ii) the standard NASA (National Aeronautics and Space Administration) algorithm, and (iii) the Polarization Ratio Index, PRI. For ASCAT the Vienna University of Technology, TUWIEN, change detection algorithm is employed. An exponential filter is applied to approach root-zone soil moisture. Moreover, two different scaling strategies, based respectively on linear regression correction and Cumulative Density Function (CDF) matching, are employed to remove systematic differences between satellite and site-specific soil moisture data. Results are shown in terms of both relative soil moisture values (i.e., between 0 and 1) and anomalies from the climatological expectation.Among the three soil moisture products derived from AMSR-E sensor data, for most sites the highest correlation with observed and modelled data is found using the LPRM algorithm. Considering relative soil moisture values for an ~ 5 cm soil layer, the TUWIEN ASCAT product outperforms AMSR-E over all sites in France and central Italy while similar results are obtained in all other regions. Specifically, the average correlation coefficient with observed (modelled) data equals to 0.71 (0.74) and 0.62 (0.72) for ASCAT and AMSR-E-LPRM, respectively. Correlation values increase up to 0.81 (0.81) and 0.69 (0.77) for the two satellite products when exponential filtering and CDF matching approaches are applied. On the other hand, considering the anomalies, correlation values decrease but, more significantly, in this case ASCAT outperforms all the other products for all sites except the Spanish ones. Overall, the reliability of all the satellite soil moisture products was found to decrease with increasing vegetation density and to be in good accordance with previous studies. The results provide an overview of the ASCAT and AMSR-E reliability and robustness over different regions in Europe, thereby highlighting advantages and shortcomings for the effective use of these data sets for operational applications such as flood forecasting and numerical weather prediction.  相似文献   

13.
Soil moisture plays a vital role in land surface energy and the water cycle. Microwave remote sensing is widely used because of the physically based relationship between the land surface emission observed and soil moisture. However, the application of retrieved soil moisture data is restricted by its coarse spatial resolution. To overcome this weakness, downscaling methods should be developed to disaggregate coarse resolution microwave soil moisture data to fine resolution. The traditional method is the microwave-optical/IR synergistic approach, in which land surface temperature, vegetation index, and surface albedo are key parameters. Five purely empirical methods based on the triangle feature are selected in this study. To evaluate their performance on downscaling microwave soil moisture, these methods are applied to the Zoige Plateau in China using the Advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR-E) Land Parameter Retrieval Model (LPRM) soil moisture product and Moderate Resolution Imaging Spectroradiometer (MODIS) optical/IR products. The coarse-resolution AMSR-E LPRM soil moisture data are disaggregated into the high resolution of the MODIS product, and the surface soil moisture measurements of the Maqu soil moisture observation network located in the plateau are used to validate the downscaling results. Results show that (1) the relationship models used in these methods can generally capture the variation in soil moisture, with R2 around 0.6, but have a relatively high uncertainty under conditions of high soil moisture; (2) the methods can provide high-resolution soil moisture distribution, but the downscaled soil moisture presents a low level correlation with field measurements at different spatial and temporal scales. This comparative study provides insight into the performance of popular purely empirical downscaling methods on enhancing the spatial resolution of soil moisture on the Tibetan Plateau. Although synergistic methods can improve the spatial resolution of AMSR-E soil moisture data, additional studies are needed to exclude the uncertainty from AMSR-E soil moisture estimation, the low sensitivity of the relationship model under high soil moisture, and the spatial representativeness difference between coarse pixels and point measurement.  相似文献   

14.
Applications of microwave remote-sensing data in land data assimilation are a topic of current interest and importance due to their high temporal and spatial resolution and availability. However, there have been few studies on land surface sub-grid scale heterogeneity and calculating microwave wetland surface emissivity when directly assimilating gridded Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) satellite brightness temperature (BT) data to estimate soil moisture. How to assimilate gridded AMSR-E BT data for land surface model (LSM) grid cells including various land cover types, especially wetland, is worthy of careful study. The ensemble Kalman filter (EnKF) method is able to resolve the non-linearity and discontinuity in forecast and observation operators, and is widely used in land data assimilation. In this study, considering the influences of land surface sub-grid scale heterogeneity, a satellite data simulation scheme based on the National Center for Atmosphere Research (NCAR) Community Land Model version 2.0 (CLM2.0), microwave Land Emissivity Model (LandEM), Shuffled Complex Evolution (SCE-UA) algorithm and AMSR-E BT observation data is presented to simulate AMSR-E BT data and calibrate microwave wetland surface emissivity; then, a soil moisture data assimilation scheme is developed to directly assimilate the gridded AMSR-E BT data, which consists of the CLM2.0, LandEM and EnKF. The experimental results indicate that the calibrated microwave wetland surface emissivities possess excellent transportability, and that the assimilation scheme is practical and can significantly improve soil moisture estimation accuracy. This study provides a promising solution to improve soil moisture estimation accuracy through directly assimilating gridded AMSR-E BT data for various land cover types such as bare soil, vegetation, snow, lake and wetland.  相似文献   

15.
Current methods to assess soil moisture extremes rely primarily on point-based in situ meteorological stations which typically provide precipitation and temperature rather than direct measurements of soil moisture. Microwave remote sensing offers the possibility of quantifying surface soil moisture conditions over large spatial extents. Capturing soil moisture anomalies normally requires a long temporal record of data, which most operating satellites do not have. This research examines the use of surface soil moisture from the AMSR-E passive microwave satellite to derive surface soil moisture anomalies by exploiting spatial resolution to compensate for the shorter temporal record of the satellite sensor. Four methods were used to spatially aggregate information to develop a surface soil moisture anomaly (SMA). Two of these methods used soil survey and climatological zones to define regions of homogeneity, based on the Soil Landscapes of Canada (SLC) and the EcoDistrict nested hierarchy. The second two methods (ObShp3 and ObShp5) used zones defined by a data driven segmentation of the satellite soil moisture data. The level of sensitivity of the calculated SMA decreased as the number of pixels used in the spatial aggregation increased, with the average error reducing to less than 5% when more than 15 pixels are used. All methods of spatial aggregation showed somewhat weak but consistent relationship to in situ soil moisture anomalies and meteorological drought indices. The size of the regions used for aggregation was more important than the method used to create the regions. Based on the error and the relationship to the in situ and ancillary data sets, the EcoDistrict or ObShp3 scale appears to provide the lowest error in calculating the SMA baseline. This research demonstrates that the use of spatial aggregation can provide useful information on soil moisture anomalies where satellite records of data are temporally short.  相似文献   

16.
In this article, we report on the assessment of the spatial variability of soil moisture using synthetic aperture radar (SAR) data. The imagery was acquired during five different periods over the Roseau River watershed in southern Manitoba, Canada. For validation purposes, ground measurements were carried out at 62 locations simultaneous with the satellite data acquisitions. The first step in this analysis was to assess the performance of the Integral Equation Model (IEM) in simulating backscatter coefficients for selected bare soils. In order to reduce the surface roughness effect on radar backscatter, a semi-empirical calibration technique was implemented. This calibrated model was then implemented in a simplex inversion routine in order to estimate and map soil moisture. Derived spatial patterns of near-surface moisture content were then examined using scale analyses. It has been confirmed that the variance of radar-based soil moisture images follows power law decay versus the observation scale. Also, more explicit analysis of the same soil moisture maps shows a ln–ln linear spatial scale with statistical moments. Concave shape dependency of the corresponding slopes with the moment order was observed during all radar acquisition periods. The latter indicates the presence of multifractal effects.  相似文献   

17.
An unresolved issue in global soil moisture retrieval using passive microwave sensors is the spatial integration of heterogeneous landscape features to the nominal 50 km footprint observed by most low frequency satellite systems. One of the objectives of the Soil Moisture Experiments 2004 (SMEX04) was to address some aspects of this problem, specifically variability introduced by vegetation, topography and convective precipitation. Other goals included supporting the development of soil moisture data sets that would contribute to understanding the role of the land surface in the concurrent North American Monsoon System. SMEX04 was conducted over two regions: Arizona — semi-arid climate with sparse vegetation and moderate topography, and Sonora (Mexico) — moderate vegetation with strong topographic gradients. The Polarimetric Scanning Radiometer (PSR/CX) was flown on a Naval Research Lab P-3B aircraft as part of SMEX04 (10 dates of coverage over Arizona and 11 over Sonora). Radio Frequency Interference (RFI) was observed in both PSR and satellite-based (AMSR-E) observations at 6.92 GHz over Arizona, but no detectable RFI was observed over the Sonora domain. The PSR estimated soil moisture was in agreement with the ground-based estimates of soil moisture over both domains. The estimated error over the Sonora domain (SEE = 0.021 cm3/cm3) was higher than over the Arizona domain (SEE = 0.014 cm3/cm3). These results show the possibility of estimating soil moisture in areas of moderate and heterogeneous vegetation and high topographic variability.  相似文献   

18.
A study was performed to evaluate the surface soil moisture derived from Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sensor observations over South America. Other soil moisture and rainfall datasets were also used for the analysis. The information for the soil data came from the Eta regional climate model, and for the rainfall data from the Tropical Rainfall Microwave Mission (TRMM) satellite. Statistical analysis was used to evaluate the quality of the soil moisture and rainfall products, with estimates of the correlation coefficient (R), χ2 and Cramer's phi (?c). The results show high correlations (R > 0.8) of the AMSR-E soil moisture products with the Eta model for different regions of South America. Comparison of soil moisture products with rainfall datasets showed that the AMSR-E C-band soil moisture product was highly correlated with the TRMM satellite rainfall datasets, with the highest values of χ2 and ?. The results show that the AMSR-E C-band soil moisture products contain important information that can be used for various purposes, such as monitoring floods or droughts in arid areas or as input within the framework of an assimilation scheme of numerical weather prediction models.  相似文献   

19.
基于MODIS和AMSR-E遥感数据的土壤水分降尺度研究   总被引:3,自引:0,他引:3  
微波传感器获得的土壤水分产品空间分辨率一般都很粗,而流域尺度上的研究需要中高分辨率的土壤水分数据。用MODIS逐日地表温度产品MOD11A1和逐日地表反射率产品MOD09GA构建温度-植被指数特征空间,并计算得到TVDI(Temperature Vegetation Dryness Index)指数,它与土壤水分呈负相关关系,能够反映土壤水分的空间分布模式,但并不是真实的土壤水分值。在AMSR-E像元尺度上求得TVDI与土壤水分的负相关系数,进而对VUA AMSR-E土壤水分产品进行降尺度计算得到0.01°分辨率的真实土壤水分值。经NAFE06(The National Airborne Field Experiment 2006)试验地面采样数据验证,降尺度后的土壤水分均方根误差平均值为6.1%。  相似文献   

20.
在给定土壤质地和粗糙度状况条件下,用AIEM模型模拟AMSR-E的6.925GHz、10.65GHz和18.7GHz频率下不同含水量时土壤表面发射率和土壤温度的关系,分析表明V极化的发射率受土壤温度的影响很小,其变化主要由土壤水分的变化引起。通过计算不同频率组合V极化通道的归一化微波差异指数,并模拟与土壤水分的关系,然后利用这一关系对塔克拉玛干沙漠中部某地的土壤水分进行反演。结果发现用18.7GHz和10.65GHz V极化通道组合的反演值与AMSR-E Level 3土壤水分产品的吻合程度最好。在此基础上分别用3种常见的半经验表面散射模型:Q/H模型、Hp模型和Qp模型,通过计算上述通道组合的NMDI来反演研究区的土壤水分,结果表明利用3种半经验模型得到的反演值之间差异非常小,并且与用AIEM模型计算NMDI时的反演结果吻合较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号