首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate the abilities of seven remote sensors to classify coral, algae, and carbonate sand based on 10,632 reflectance spectra measured in situ on reefs around the world. Discriminant and classification analyses demonstrate that full-resolution (1 nm) spectra provide very good spectral separation of the bottom-types. We assess the spectral capabilities of the sensors by applying to the in situ spectra the spectral responses of two airborne hyperspectral sensors (AAHIS and AVIRIS), three satellite broadband multispectral sensors (Ikonos, Landsat-ETM+ and SPOT-HRV), and two hypothetical satellite narrowband multispectral sensors (Proto and CRESPO). Classification analyses of the simulated sensor-specific spectra produce overall classification accuracy rates of 98%, 98%, 93%, 91%, 64%, 58%, and 50% for AAHIS, AVIRIS, Proto, CRESPO, Ikonos, Landsat-ETM+, and SPOT-HRV, respectively. Analyses of linearly mixed sensor-specific spectra reveal that the hyperspectral and narrowband multispectral sensors have the ability to discriminate between coral and algae across many levels of mixing, while the broadband multispectral sensors do not. Applying the results of the general mixing analyses to a specific spatial organization of coral, algae, and sand indicates that the hyperspectral sensors accurately estimate areal cover of the bottom-types regardless of pixel resolution. The narrowband multispectral sensors overestimate coral cover by 11-15%, while the broadband sensors underestimate algae cover by 7-29% and overestimate coral cover by 24-103%. We conclude that currently available satellite sensors are inadequate for assessment of global coral reef status, but that it is both necessary and possible to design a sensor system suited to the task.  相似文献   

2.
Coral reef maps at various spatial scales and extents are needed for mapping, monitoring, modelling, and management of these environments. High spatial resolution satellite imagery, pixel <10 m, integrated with field survey data and processed with various mapping approaches, can provide these maps. These approaches have been accurately applied to single reefs (10–100 km2), covering one high spatial resolution scene from which a single thematic layer (e.g. benthic community) is mapped. This article demonstrates how a hierarchical mapping approach can be applied to coral reefs from individual reef to reef-system scales (10–1000 km2) using object-based image classification of high spatial resolution images guided by ecological and geomorphological principles. The approach is demonstrated for three individual reefs (10–35 km2) in Australia, Fiji, and Palau; and for three complex reef systems (300–600 km2) one in the Solomon Islands and two in Fiji. Archived high spatial resolution images were pre-processed and mosaics were created for the reef systems. Georeferenced benthic photo transect surveys were used to acquire cover information. Field and image data were integrated using an object-based image analysis approach that resulted in a hierarchically structured classification. Objects were assigned class labels based on the dominant benthic cover type, or location-relevant ecological and geomorphological principles, or a combination thereof. This generated a hierarchical sequence of reef maps with an increasing complexity in benthic thematic information that included: ‘reef’, ‘reef type’, ‘geomorphic zone’, and ‘benthic community’. The overall accuracy of the ‘geomorphic zone’ classification for each of the six study sites was 76–82% using 6–10 mapping categories. For ‘benthic community’ classification, the overall accuracy was 52–75% with individual reefs having 14–17 categories and reef systems 20–30 categories. We show that an object-based classification of high spatial resolution imagery, guided by field data and ecological and geomorphological principles, can produce consistent, accurate benthic maps at four hierarchical spatial scales for coral reefs of various sizes and complexities.  相似文献   

3.
Maps of coral reef habitats are fundamental tools for reef management, and high map accuracy is desirable to support appropriate decisions, such as the stratification of marine reserves by habitat class. While satellite sensors have been used to map different reef communities, the accuracy of these maps tends to be low (overall accuracy < 50%) and optical airborne methods with high spectral resolution have, to date, been the most effective (if expensive) means of achieving higher accuracy. A potential means of compensating for the low spectral and radiometric resolution of optical satellite data, which is a major cause of its poor performance, is to combine satellite data with acoustic remote sensing. This study quantified the benefit of the synergy between optical satellite data (IKONOS) and acoustic (RoxAnn) sensors. The addition of acoustic data provided three new data axes for discriminating habitats: seabed roughness (E1), reef depth (z) and the depth correction of satellite spectral data to uniform depth. Seabed hardness (E2) was not an informative channel in our study. The use of z to conduct the water-column correction of the optical bands to uniform depth is a potential improvement over applying the depth-invariant index approach to optical data in the absence of ancillary information on depth. Habitat maps of the forereef of Glovers Atoll (Belize, Central America) were created using k-means unsupervised classification on eleven different treatment images constructed from various combinations of optical and acoustic data layers. The maximum benefit of data synergy was achieved by depth correcting the optical bands. The accuracy of maps based on the depth-invariant optical index was not enhanced when E1, E2 or z were added as separate layers but was enhanced when these three acoustic measures were added in concert. Data synergy can improve the accuracy of habitat maps and the availability of both data sets allows practitioners to take advantage of each techniques' additional strengths such as providing synoptic continuous imagery for education and general management planning (in the case of optical imagery) and maps of reef rugosity (in the case of acoustic data).  相似文献   

4.
The generation of precise land cover classification maps is an important application of high resolution satellite multispectral imagery. In this study, Spectral Angle Mapper algorithm (SAM) was used to extract the spectral characteristics from multispectral imagery. The spectral angle between neighbouring pixels was calculated. The distribution of spectral characteristics was derived from the average and variance of the calculated spectral angle in a 3×3 window of the image. The extracted spectral characteristics were combined with original multispectral imagery, and the data were classified by the maximum likelihood method. This approach was applied to Quickbird multispectral imagery. The extracted spectral characteristics highlighted boundaries between different types of land cover. The method proposed in this study exhibits an increase in overall classification accuracy relative to the original maximum likelihood method.  相似文献   

5.
Although research with digital airborne remote sensing data has been undertaken in different ecoregions to classify forested areas, the potential role of such imagery in deriving information to assist forest management has not yet been fully defined. The objective of this study was to determine the extent that the addition of texture could improve spectral classification of high spatial resolution images (pixel size 1m). These images represented pure and mixed wood forest stands from ecoregions in Alberta and New Brunswick, Canada. This study employed a judicious, selective application of texture to stands within a hierarchical classification framework. In Alberta, the addition of texture made a modest improvement in classification accuracy from 60% to 65%. In New Brunswick, the application of texture to selected land cover types resulted in an overall 12% improvement in classification accuracy. The addition of image texture increased classification accuracy for high spatial detail imagery relative to low spatial detail imagery. Incorporating texture into classification also improved classification accuracies for hardwood stands more so than for softwood stands, but greater attention to stand structure and composition will be needed in future work. Classification accuracies on the order of 60-65% were achieved with simple texture derivatives, maximum likelihood decision rules and conventional classification methods.  相似文献   

6.
Russian MK-4 multispectral satellite photography has been investigated for potential in land cover classification. Thematic maps were generated using maximum likelihood, neural network and context classifiers. Classifications of the raw spectral data, of spectral transforms, and of combined spectral/textural data were evaluated. Low point-based class accuracies resulted for land cover types exhibiting high spatial variability at the given pixel spacing of 7.5m, while more spatially homogeneous cover types were well classified. Several issues arose which need to be addressed for effective future use of high-resolution satellite sensors in regional land cover mapping. They include the need for further research in techniques for classification and accuracy assessment which are sensitive to the spatial variance of such high resolution imagery, and optimization of class attribute definitions.  相似文献   

7.
The accuracy of traditional multispectral maximum‐likelihood image classification is limited by the multi‐modal statistical distributions of digital numbers from the complex, heterogenous mixture of land cover types in urban areas. This work examines the utility of local variance, fractal dimension and Moran's I index of spatial autocorrelation in segmenting multispectral satellite imagery with the goal of improving urban land cover classification accuracy. Tools available in the ERDAS ImagineTM software package and the Image Characterization and Modeling System (ICAMS) were used to analyse Landsat ETM?+ imagery of Atlanta, Georgia. Images were created from the ETM?+ panchromatic band using the three texture indices. These texture images were added to the stack of multispectral bands and classified using a supervised, maximum likelihood technique. Although each texture band improved the classification accuracy over a multispectral only effort, the addition of fractal dimension measures is particularly effective at resolving land cover classes within urbanized areas, as compared to per‐pixel spectral classification techniques.  相似文献   

8.
The largest artificial Robinia pseudoacacia forests in the Yellow River delta of China have been infected by dieback diseases. Over the past several decades, this has caused a large amount of mortality of Robinia pseudoacacia forests in this area. Timely and accurate information on the health levels of the forests is crucial to improving local ecological and economic conditions. Remote sensing has been demonstrated to be a useful tool to map forest diseases over a large area. In this study, IKONOS and Landsat 8 Operational Land Imager (OLI) sensor data were collected for comparing their capability of accurately mapping health levels of the artificial forests. There were three health levels (i.e. healthy, medium dieback, and severe dieback) based on explicit tree crown symptoms. After the IKONOS and OLI images were preprocessed, both spatial and spectral features were extracted from the IKONOS and OLI imagery, and a maximum likelihood classification method was used to identify and map health levels of Robinia pseudoacacia forests. The experimental results indicate that the IKONOS sensor has greater potential for identifying and mapping forest health levels. Furthermore, texture features, especially texture variance, derived from the IKONOS panchromatic band, contributed greatly to the accuracy of classification results, achieving an overall accuracy (OA) of 96% for the IKONOS sensor and an OA of 88% for the OLI 2, which used both OLI spectral and IKONOS spatial features, compared with an OA of 74% for the OLI sensor alone. Our results indicate that the texture features extracted from high resolution imagery can improve the classification accuracy of health levels of planted forests with a regular spatial pattern. Our experimental results also demonstrate that classification of an image with a spatial resolution similar to, or finer than, tree crown diameter outperforms that of relatively coarse resolution imagery for differentiating living tree crowns and understorey dense green grass.  相似文献   

9.
Studies investigating the spectral reflectance of coral reef benthos and substrates have focused on the measurement of pure endmembers, where the entire field of view (FOV) of a spectrometer is focused on a single benthos or substrate type. At the spatial scales of the current satellite sensors, the heterogeneity of coral reefs even at a sub-metre scale means that many individual image pixels will be made up of a mixture of benthos and substrate types. If pure endmember spectra are used as training data for image classification, there is a spatial discrepancy, because many pixels will have a mixed endmember spectral reflectance signature. This study investigated the spectral reflectance of coral reef benthos and substrates at a spatial scale directly linked to the pixel size of high spatial resolution imaging systems, by incorporating multiple benthos and substrate types into the spectrometer FOV in situ. A total of 334 spectral reflectance signatures were measured of 19 assemblages of the coral reef benthos and substrate types. The spectra were analysed for separability using first derivative values, and a discrimination decision tree was designed to identify the assemblages. Using the decision tree, it was possible to identify 15 assemblages with a mean overall classification accuracy of 62.6%.  相似文献   

10.
Remote sensing technology can be a valuable tool for mapping coral reef ecosystems. However, the resolution capabilities of remote sensors, the diversity and complexity of coral reef ecosystems, and the low reflectivity of marine environments increase the difficulties in identifying and classifying their features. This research study explores the capability of high spatial resolution (WorldView-2 (WV-2) and Pleiades-1B) and low spatial resolution (Land Remote-Sensing Satellite (Landsat 8)) multispectral (MS) satellite sensors in quantitatively mapping coral density. The Kubbar coral reef ecosystem, located in Kuwait’s southern waters, was selected as the research site. The MS imagery of WV-2, Pleiades-1B and Landsat 8 were, after geometric and radiometric assessment and corrections, subjected to new image classification approach using a Multiple Linear Regression (MLR) analysis. The new approach of MLR coral density analysis used the dependent variable of coral density percentage from ground truth and independent variables of spectral reflectance from selected imagery, depth (as estimated from a surface derived from bathymetric charts) and distance to land or reef unit centre. Accuracy assessment using independent ground truth was performed for the selected approach and satellite sensors to determine the quality of the information derived from image classification processes. The results showed that coral density maps developed using the MLR coral density model proved to have some level of reliability (radiometrically corrected WV-2 image (the coefficient determination denoted as R-squared (R²) = 0.5, Root-Mean-Square Error (RMSE) = 10) and radiometrically corrected Pleiades-1B image (R² = 0.8, RMSE = 10)). This study suggested using high spectral resolution data and including additional factors (variables) (e.g. water turbidity, temperature and salinity) could contribute to improving the accuracy of coral density maps produced by application of the MLR model; however, all of these would add cost and effort to the mapping process. The outcomes of this research study provide coral reef ecosystem researchers, managers, and decision makers a tool to determine and map coral reef density in more detail than in the past. It will help quantify coral density at particular points in time leading to estimates of change, and allow coral reef ecologists to identify the current coral reef habitat health status, distribution and extent.  相似文献   

11.
The loss of coral reef habitats has been witnessed at a global scale including in the Florida Keys and the Caribbean. In addition to field surveys that can be spatially limited, remote sensing can provide a synoptic view of the changes occurring on coral reef habitats. Here, we utilize an 18-year time series of Landsat 5/TM and 7/ETM+ images to assess changes in eight coral reef sites in the Florida Keys National Marine Sanctuary, namely Carysfort Reef, Grecian Rocks, Molasses Reef, Conch Reef, Sombrero Reef, Looe Key Reef, Western Sambo and Sand Key Reef. Twenty-eight Landsat images (1984–2002) were used, with imagery gathered every 2 years during spring, and every 6 years during fall. The image dataset was georectified, calibrated to remote sensing reflectance and corrected for atmospheric and water-column effects. A Mahalanobis distance classification was trained for four habitat classes (‘coral’, ‘sand’, ‘bare hardbottom’ and ‘covered hardbottom’) using in situ ground-truthing data collected in 2003–2004 and using the spectral statistics from a 2002 image. The red band was considered useful only for benthic habitats in depths less than 6 m. Overall mean coral habitat loss for all sites classified by Landsat was 61% (3.4%/year), from a percentage habitat cover of 19% (1984) down to 7.6% (2002). The classification results for the eight different sites were critically reviewed. A detailed pixel by pixel examination of the spatial patterns across time suggests that the results range from ecologically plausible to unreliable due to spatial inconsistencies and/or improbable ecological successions. In situ monitoring data acquired by the Coral Reef Evaluation and Monitoring Project (CREMP) for the eight reef sites between 1996 and 2002 showed a loss in coral cover of 52% (8.7%/year), whereas the Landsat-derived coral habitat areas decreased by 37% (6.2%/year). A direct trend comparison between the entire CREMP percent coral cover data set (1996–2004) and the entire Landsat-derived coral habitat areas showed no significant difference between the two time series (ANCOVA; F-test, p = 0.303, n = 32), despite the different scales of measurements.  相似文献   

12.
以吉林一号视频07B星高分遥感影像为基础,采用卷积神经网络(CNN)对城区土地覆被进行精细分类,设置多组光谱变量集合,并与最大似然法、多层感知机和支持向量机分类方法进行对比,全面评估分析各方法对城区土地覆被信息提取的适用性及波谱特征对分类精度的影响。结果表明:CNN模型的分类精度最高,总体精度高于90%,相比其他方法提高幅度达12%以上,能够显著降低“椒盐”噪音;红边波段对所有方法总体分类精度贡献十分有限,而近红外波段对分类精度的提升较为明显;总体而言,红边和近红外波段对CNN分类精度影响较为微弱。深度学习应用于吉林一号高分遥感数据能获取高精度城区土地覆被分类图,可为城市土地资源配置,城市规划与管理提供重要的支撑。  相似文献   

13.
A significant proportion of high spatial resolution imagery in urban areas can be affected by shadows. Considerable research has been conducted to investigate shadow detection and removal in remotely sensed imagery. Few studies, however, have evaluated how applications of these shadow detection and restoration methods can help eliminate the shadow problem in land cover classification of high spatial resolution images in urban settings. This paper presents a comparison study of three methods for land cover classification of shaded areas from high spatial resolution imagery in an urban environment. Method 1 combines spectral information in shaded areas with spatial information for shadow classification. Method 2 applies a shadow restoration technique, the linear-correlation correction method to create a “shadow-free” image before the classification. Method 3 uses multisource data fusion to aid in classification of shadows. The results indicated that Method 3 achieved the best accuracy, with overall accuracy of 88%. It provides a significantly better means for shadow classification than the other two methods. The overall accuracy for Method 1 was 81.5%, slightly but not significantly higher than the 80.5% from Method 2. All of the three methods applied an object-based classification procedure, which was critical as it provides an effective way to address the problems of radiometric difference and spatial misregistration associated with multisource data fusion (Method 3), and to incorporate thematic spatial information (Method 1).  相似文献   

14.
Airborne remote sensing with a CASI‐550 sensor has been used to map the benthic coverage and the bottom topography of the Pulau Nukaha coral reef located in the Tanimbar Archipelago (Southeast Moluccas, Eastern Indonesia). The image classification method adopted was performed in three steps. Firstly, five geomorphological reef components were identified using a supervised spectral angle mapping algorithm in combination with data collected during the field survey, i.e. benthic cover type, percentage cover and depth. Secondly, benthic cover mapping was performed for each of the five geomorphological components separately using an unsupervised hierarchical clustering algorithm followed by class aggregation using both spectral and spatial information. Finally, 16 benthic cover classes could be labelled using the benthic cover data collected during the field survey. The overall classification accuracy, calculated on the biological diverse fore reef, was 73% with a kappa coefficient of 0.63. A reliable bathymetric model (up to a depth of 15 m) of the Pulau Nukaha reef was also obtained using a semi‐analytical radiative transfer model. When compared with independent in‐situ depth measurements, the result proved relatively accurate (mean residual error: ?0.9 m) and was consistent with the seabed topography (Pearson correlation coefficient: 86%).  相似文献   

15.
This research compared the ability of Landsat ETM+, Quickbird and three image classification methods for discriminating amongst coral reefs and associated habitats in Pacific Panama. Landsat ETM+ and Quickbird were able to discriminate coarse and intermediate habitat classes, but this was sensitive to classification method. Quickbird was significantly more accurate than Landsat (14% to 17%). Contextual editing was found to improve the user's accuracy of important habitats. The integration of object‐oriented classification with non‐spectral information in eCognition produced the most accurate results. This method allowed sufficiently accurate maps to be produced from Landsat, which was not possible using the maximum likelihood classifier. Object‐oriented classification was up to 24% more accurate than the maximum likelihood classifier for Landsat and up to 17% more accurate for Quickbird. The research indicates that classification methodology should be an important consideration in coral reef remote sensing. An object‐oriented approach to image classification shows potential for improving coral reef resource inventory.  相似文献   

16.
面向土地覆盖分类的MODIS影像融合研究   总被引:1,自引:0,他引:1       下载免费PDF全文
MODIS影像的多波段及其1、2波段的250 m中等分辨率为大区域中空间分辨率的土地覆盖制图提供了可能。为了有效利用MODIS影像的空间和光谱信息,使用SFIM、HPF和PCA变换等遥感影像融合方法,分别采用MODIS影像的波段1(b1)和波段2(b2)对3~7(b3~b7)波段进行融合,并就融合影像的光谱保真度和分类精度对6种不同融合结果进行评价。结果表明不同的融合结果得到的分类精度均有不同程度的提高;3种融合方法中使用b2的融合效果均优于b1;SFIM变换在光谱失真较小的情况下能够较大程度地提高分类精度。因此使用b2的SFIM变换可以用于提高MODIS土地覆盖图的空间分辨率和精度。  相似文献   

17.
Mapping the land-cover distribution in arid and semiarid urban landscapes using medium spatial resolution imagery is especially difficult due to the mixed-pixel problem in remotely sensed data and the confusion of spectral signatures among bare soils, sparse density shrub lands, and impervious surface areas (ISAs hereafter). This article explores a hybrid method consisting of linear spectral mixture analysis (LSMA), decision tree classifier, and cluster analysis for mapping land-cover distribution in two arid and semiarid urban landscapes: Urumqi, China, and Phoenix, USA. The Landsat Thematic Mapper (TM) imagery was unmixed into four endmember fraction images (i.e. high-albedo object, low-albedo object, green vegetation (GV), and soil) using the LSMA approach. New variables from these fraction images and TM spectral bands were used to map seven land-cover classes (i.e. forest, shrub, grass, crop, bare soil, ISA, and water) using the decision tree classifier. The cluster analysis was further used to modify the classification results. QuickBird imagery in Urumqi and aerial photographs in Phoenix were used to assess classification accuracy. Overall classification accuracies of 86.0% for Urumqi and 88.7% for Phoenix were obtained, much higher accuracies than those utilizing the traditional maximum likelihood classifier (MLC). This research demonstrates the necessity of using new variables from fraction images to distinguish between ISA and bare soils and between shrub and other vegetation types. It also indicates the different effects of spatial patterns of land-cover composition in arid and semiarid landscapes on urban land-cover classification.  相似文献   

18.
Freshwater wetlands are highly diverse, spatially heterogeneous, and seasonally dynamic systems that present unique challenges to remote sensing. Maximum likelihood and support vector machine-supervised classification were compared to map wetland plant species distributions in a deltaic environment using high-resolution WorldView-2 satellite imagery. The benefits of the sensor’s new coastal blue, yellow, and red-edge bands were tested for mapping coastal vegetation and the eight-band results were compared to classifications performed using band combinations and spatial resolutions characteristic of other available high-resolution satellite sensors. Unlike previous studies, this study found that support vector machine classification did not provide significantly different results from maximum likelihood classification. The maximum likelihood classifier provided the highest overall classification accuracy, at 75%, with user’s and producer’s accuracies for individual species ranging from 0% to 100%. Overall, maximum likelihood classification of WorldView-2 imagery provided satisfactory results for species distribution mapping within this freshwater delta system and compared favourably to results of previous studies using hyperspectral imagery, but at much lower acquisition cost and greater ease of processing. The red-edge and coastal blue bands appear to contribute the most to improved vegetation mapping capability over high-resolution satellite sensors that employ only four spectral bands.  相似文献   

19.
Monitoring of coral reef bleaching has hitherto been based on regional-scale, in situ data. Larger-scale trends, however, must be determined using satellite-based observations. Using both a radiative transfer simulation and an analysis of multitemporal Landsat TM images, the ability of satellite remote sensing to detect and monitor coral reef bleaching is examined. The radiative transfer simulation indicates that the blue and green bands of Landsat TM can detect bleaching if at least 23% of the coral surface in a pixel has been bleached, assuming a Landsat TM pixel with a resolution of 30×30 m on shallow (less than 3 m deep) reef flats at Ishigaki Island, Japan. Assuming an area with an initial coral coverage of 100% and in which all corals became completely bleached, the bleaching could be detected at a depth of up to 17 m. The difference in reflectance of shallow sand and corals is compared by examining multitemporal Landsat TM images at Ishigaki Island, after normalizing for variations in atmospheric conditions, incident light, water depth, and the sensor's reaction to the radiance received. After the normalization, a severe bleaching event when 25-55% of coral coverage was bleached was detected, but a slight bleaching event when 15% of coral coverage was bleached was not detected. The simulation and data analysis agreed well with each other, and identified reliable limits for satellite remote sensing for detecting coral reef bleaching. Sensitivity analysis on solar zenith angle, aerosol (visibility) and water quality (Chl a concentration) quantified the effect of these factors on bleaching detection, and thus served as general guidelines for detecting coral reef bleaching. Spatial misregistration resulted in a high degree of uncertainty in the detection of changes at the edges of coral patches mainly because of the low (∼30 m) spatial resolution of Landsat TM, indicating that detection of coral reef bleaching by Landsat TM is limited to extremely severe cases on a large homogeneous coral patch and shallow water depths. Satellite remote sensing of coral reef bleaching should be encouraged, however, because the development and deployment of advanced satellite sensors with high spatial resolution continue to progress.  相似文献   

20.
Classification of remotely sensed imagery into groups of pixels having similar spectral reflectance characteristics is conducted classically by comparing the spectral signature of unknown pixels with those of training pixels of known ground cover type. Thus classification methods use only the spectral characteristics of image data without considering the spatial aspects or the relative location of an unknown pixel with respect to pixels from the training data set. An indicator classifier was introduced in 1992 that combines spatial and spectral information in a decision model. In this Letter the performance of this classifier is tested on simulated image data with known mineral targets and varying spatial variability and noise. It is demonstrated that incorporating spatial continuity into the classification process may largely increase the accuracy of the resulting classified images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号