首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The NASA Moderate Resolution Imaging Spectroradiometer onboard the Aqua platform (MODIS-Aqua) provides a viable data stream for operational water quality monitoring of Chesapeake Bay. Marine geophysical products from MODIS-Aqua depend on the efficacy of the atmospheric correction process, which can be problematic in coastal environments. The operational atmospheric correction algorithm for MODIS-Aqua requires an assumption of negligible near-infrared water-leaving radiance, nLw(NIR). This assumption progressively degrades with increasing turbidity and, as such, methods exist to account for non-negligible nLw(NIR) within the atmospheric correction process or to use alternate radiometric bands where the assumption is satisfied, such as those positioned within shortwave infrared (SWIR) region of the spectrum. We evaluated a decade-long time-series of nLw(λ) from MODIS-Aqua in Chesapeake Bay derived using NIR and SWIR bands for atmospheric correction. Low signal-to-noise ratios (SNR) for the SWIR bands of MODIS-Aqua added noise errors to the derived radiances, which produced broad, flat frequency distributions of nLw(λ) relative to those produced using the NIR bands. The SWIR approach produced an increased number of negative nLw(λ) and decreased sample size relative to the NIR approach. Revised vicarious calibration and regional tuning of the scheme to switch between the NIR and SWIR approaches may improve retrievals in Chesapeake Bay, however, poor SNR values for the MODIS-Aqua SWIR bands remain the primary deficiency of the SWIR-based atmospheric correction approach.  相似文献   

2.
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), and Medium Resolution Imaging Spectrometer (MERIS) remote-sensing radiometric and chlorophyll-a (chl-a) concentration products for the South China Sea (SCS) from October 2003 to May 2010 were assessed using in situ data. A strict spatiotemporal match-up method was used to minimize the temporal variability effects of atmosphere and seawater around the measurement site. A comparison of the remote-sensing reflectance (Rrs(λ)) of the three sensors with in situ values from the open waters of the SCS showed that the mean absolute percentage difference varied from 13% to 55% in the 412–560 nm spectral range. Generally, the MERIS radiometric products exhibited higher typical uncertainties and bias than the SeaWiFS and MODIS products. The Rrs(443) to Rrs(555/551/560) band ratios of the satellite data were in good agreement with in situ observations for these sensors. The SeaWiFS, MODIS, and MERIS chl-a products overestimated in situ values by 74%, 42%, and 120%, respectively. MODIS retrieval accuracy was better than those of the other sensors, with MERIS performing the worst. When the match-up criteria were relaxed, the assessment results degraded systematically. Therefore, strict spatiotemporal match-up is recommended to minimize the possible influences of small-scale variation in geophysical properties around the measurement site. Coastal and open-sea areas in the SCS should be assessed separately because their biooptical properties are different and the results suggest different atmospheric correction problems.  相似文献   

3.
Coastal waters (Case 2) are generally more optically complex than oceanic waters and contain much higher quantities of colored detrital matter (CDM, a combination of dissolved organic matter and detrital particulates) as well as suspended sediment. Exclusion of CDM in the retrieval can lead to an overestimation of chlorophyll a concentration (C). We present a validation of a Case 2 version of the coupled spectral optimization algorithm (SOA) for simultaneous atmospheric correction and water parameter retrieval using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite ocean color data. Modeling of water constituents uses the Garver, Siegel and Maritorena (GSM) semi-analytic bio-optical model locally tuned for Chesapeake Bay. This includes a parameterization for CDM through its absorption spectrum.SOA-retrieved C and CDM are compared with in situ measurements in Chesapeake Bay. Results are also compared with output from two alternate models 1) the standard algorithm (Std) and 2) the standard atmospheric correction combined with the locally tuned GSM model (StdGSM). The comparisons indicate that the SOA is a viable alternative to both given models in Chesapeake Bay. In contrast, StdGSM appears to require improvement before it can be considered for operational use in these waters. Perhaps the most important result is the high-quality of CDM retrievals with the SOA. They suggest that there is value added using the SOA method in Chesapeake waters, as the Std method does not retrieve CDM. In a companion paper we describe in detail the model implementation, and its accuracy and limitations when applied to the Chesapeake Bay.  相似文献   

4.
We examined the spatial and temporal variability of the Secchi Disk Depth (SDD) within Tampa Bay, Florida, using the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) satellite imagery collected from September 1997 to December 2005. SDD was computed using a two-step process, first estimating the diffuse light attenuation coefficient at 490 nm, Kd(490), using a semi-analytical algorithm and then SDD using an empirical relationship with Kd(490). The empirical SDD algorithm (SDD = 1.04 × Kd(490)− 0.82, 0.9 < SDD < 8.0 m, r2 = 0.67, n = 80) is based on historical SDD observations collected by the Environmental Protection Commission of Hillsborough County (EPCHC) in Tampa Bay. SeaWiFS derived SDD showed distinctive seasonal variability, attributed primarily to chlorophyll concentrations and color in the rainy season and to turbidity in the dry season, which are in turn controlled by river runoff and winds or wind-induced sediment resuspension, respectively. The Bay also experienced strong interannual variability, mainly related to river runoff variability. As compared to in situ single measurements, the SeaWiFS data provide improved estimates of the “mean” water clarity conditions in this estuary because of the robust, frequent, and synoptic coverage. Therefore we recommend incorporation of this technique for routine monitoring of water quality in coastal and large estuarine waters like Tampa Bay.  相似文献   

5.
An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea   总被引:4,自引:0,他引:4  
An extensive bio-optical data set from field measurements was used to evaluate the performance of standard Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color (in-water) algorithms in the Baltic Sea, which represents an example of optically complex Case 2 waters with high concentration of colored dissolved organic matter (CDOM). The data set includes coincident measurements of radiometric quantities, chlorophyll a concentration (Chl a), and absorption coefficient of CDOM, which were taken on 25 cruises between 1993 and 2001. The data cover a wide range of variability with Chl a in surface waters from about 0.3 to 100 mg m−3. All the MODIS pigment algorithms examined as well as the SeaWiFS OC4v4 algorithm showed a systematic and large overestimation in chlorophyll retrievals. The mean systematic and random errors based on our entire data set exceeded 150% or even 200% in some cases, making these standard algorithms inadequate for pigment determinations in the Baltic. Although new parameterization of the standard pigment algorithms based on our field measurements in the Baltic resulted in a significant reduction of errors, the overall performance of such regionally tuned algorithms remained unsatisfactory. For example, the mean normalized bias (MNB) for the regionally tuned MODIS chlor_a_2 algorithm was reduced to 26% (from over 200% for the standard algorithm), but the root mean square (RMS) error was still large (>100%). The MODIS K_490 algorithm for estimating the diffuse attenuation coefficient of downwelling irradiance showed the best performance among all the algorithms examined. With the new coefficients based on our field data, the regional version of this algorithm showed an acceptable level of errors, MNB=4% and RMS=30%. In addition to the apparent problems of the standard in-water bio-optical algorithms, we found that the atmospheric correction currently in use for MODIS and SeaWiFS imagery usually fails to retrieve upwelling radiances emerging from the Baltic Sea. The match-up comparisons of the coincident in situ and satellite determinations of normalized water-leaving radiances showed generally poor agreement, especially in the blue spectral region. It appears that new approaches for ocean color algorithms are required in the Baltic Sea.  相似文献   

6.
Eutrophication and cyanobacterial algal blooms present an increasing threat to the health of freshwater ecosystems and to humans who use these resources for drinking and recreation. Remote sensing is being used increasingly as a tool for monitoring these phenomena in inland and near-coastal waters. This study uses the Medium Resolution Imaging Spectrometer (MERIS) to view Zeekoevlei, a small hypertrophic freshwater lake situated on the Cape Flats in Cape Town, South Africa, dominated by Microcystis cyanobacteria. The lake's small size, highly turbid water, and covariant water constituents present a challenging case for both algorithm development and atmospheric correction. The objectives of the study are to assess the optical properties of the lake, to evaluate various atmospheric correction procedures, and to compare the performance of empirical and semi-analytical algorithms in hypertrophic water. In situ water quality parameter and radiometric measurements were made simultaneous to MERIS overpasses. Upwelling radiance measurements at depth 0.66 m were corrected for instrument self-shading and processed to water-leaving reflectance using downwelling irradiance measurements and estimates of the vertical attenuation coefficient for upward radiance, Ku, generated from a simple bio-optical model estimating the total absorption, a(λ), and backscattering coefficients, bb(λ). The normalised water-leaving reflectance was used for assessing the accuracy of image-based Dark Object Subtraction and 6S Radiative Transfer Code atmospheric correction procedures applied to MERIS. Empirical algorithms for estimating chlorophyll a (Chl a), Total Suspended Solids (TSS), Secchi Disk depth (zSD) and absorption by CDOM (aCDOM) were derived from simultaneously collected in situ and MERIS measurements. The empirical algorithms gave high correlation coefficient values, although they have a limited ability to separate between signals from covariant water constituents. The MERIS Neural Network algorithms utilised in the standard Level 2 Case 2 waters product and Eutrophic Lakes processor were also used to derive water constituent concentrations. However, these failed to produce reasonable comparisons with in situ measurements owing to the failure of atmospheric correction and divergence between the optical properties and ranges used to train the algorithms and those of Zeekoevlei. Maps produced using the empirical algorithms effectively show the spatial and temporal variability of the water quality parameters during April 2008. On the basis of the results it is argued that MERIS is the current optimal sensor for frequent change detection applications in inland waters. This study also demonstrates the considerable potential value for simple TOA algorithms for hypertrophic systems. It is recommended that regional algorithm development be prioritized in southern Africa and that remote sensing be integrated into future operational water quality monitoring systems.  相似文献   

7.
An algorithm for determining chlorophyll‐a concentrations in shallow, case II waters has been developed and applied to nearly six years of Sea‐viewing Wide Field‐of‐view Sensor (SeaWiFS) data in order to observe the general chlorophyll‐a patterns in a coastal estuarine environment. Due to the fact that the current empirical chlorophyll‐a algorithm (OC4) used to process SeaWiFS data breaks down in coastal waters, a neural network based algorithm was developed. The neural network in the study uses SeaWiFS remote sensing reflectance data paired with in situ chlorophyll‐a data in the Delaware Bay and its adjacent coastal zone (DBAC) from a number of different days and seasons in an effort to overcome the limitations of single day algorithms and simulated dataset algorithms. Although the neural network model (NN) in this study displayed some difficulty representing high chlorophyll‐a values, it showed significant improvement over the OC4 algorithm. The performance parameters of the NN were an r 2 of 0.79, a root mean square (RMS) error of 3.69?mg m?3 and a relative RMS error of 0.77. The NN was used to reprocess approximately six years of cloud free imagery of the DBAC from which the spatial and temporal variability of the chlorophyll‐a distributions in the DBAC were analysed. Time series of absolute chlorophyll‐a values for five stations along the central axis of the Delaware Bay were analysed using Fourier analysis techniques, from which chlorophyll‐a patterns were found to have a quasi‐annual period. Furthermore, the spatial distributions of the chlorophyll‐a patterns were analysed using a general climatology and monthly climatologies of normalized chlorophyll‐a values. The climatologies generally agreed with spatial distributions determined from historic ship‐based data. The study found that summer blooms in the mid‐estuary of the Delaware Bay may be more important than previously observed. This suggests that more frequent and synoptic measurements via satellite can reveal important new information about even well studied regions.  相似文献   

8.
Ocean transparency, often measured using Secchi disk, is a useful index of water quality or productivity and is used in many environmental studies. The spaceborne ocean color sensors provide synoptic and regular radiometric data and can be used for applying environmental policies if the data is converted into relevant biogeochemical properties. We adapted and developed semi-analytical and empirical algorithms to estimate the Secchi depth from satellite ocean color data in both coastal and oceanic waters. The development of the algorithms is based on the use of a comprehensive in situ bio-optical dataset. The algorithms are validated using an extensive set of coincident satellite estimates and in situ measurements of the Secchi depth (so-called matchups). More than 400 matchups are compiled for the MERIS, MODIS and SeaWiFS sensors. The comparison between Secchi depth retrievals from remote sensing data and in situ measurements yields determination coefficients (R2) between 0.50 and 0.73, depending on the sensor and algorithm. The type II linear regression slopes and intercepts vary between 0.95 and 1.46, and between − 0.8 and 6.2 m, respectively. While semi-analytical algorithms provide the most promising results on in situ data, the empirical one proves to be more robust on remote sensing data because it is less sensitive to error due to erroneous atmospheric corrections. Using ocean color archives, one can derive maps of ocean transparency for different areas. Our climatology of the Secchi depth based on ocean color for the transition zone between the North Sea and Baltic Sea is compared to an historical dataset.  相似文献   

9.
Surface chlorophyll a concentrations (Ca, mg m− 3) in the Southern Ocean estimated from SeaWiFS satellite data have been reported in the literature to be significantly lower than those measured from in situ water samples using fluorometric methods. However, we found that high-resolution (∼ 1 km2/pixel) daily SeaWiFS Ca (CaSWF) data (SeaDAS4.8, OC4v4 algorithm) was an accurate measure of in situ Ca during January-February of 1998-2002 if concurrent in situ data measured by HPLC (CaHPLC) instead of fluorometric (CaFluor) measurements were used as ground truth. Our analyses indicate that CaFluor is 2.48 ± 2.23 (n = 647) times greater than CaHPLC between 0.05 and 1.5 mg m− 3 and that the percentage overestimation of in situ Ca by fluorometric measurements increases with decreasing concentrations. The ratio of CaSWF/CaHPLC is 1.12 ± 0.91 (n = 96), whereas the ratio of CaSWF/CaFluor is 0.55 ± 0.63 (n = 307). Furthermore, there is no significant bias in CaSWF (12% and − 0.07 in linear and log-transformed Ca, respectively) when CaHPLC is used as ground truth instead of CaFluor. The high CaFluor/CaHPLC ratio may be attributed to the relatively low concentrations of chlorophyll b (Cb/Ca = 0.023 ± 0.034, n = 482) and relatively high concentrations of chlorophyll c (Cc/Ca = 0.25 ± 0.59, n = 482) in the phytoplankton pigment composition when compared to values from other regions. Because more than 90% of the waters in the study area, as well as in the entire Southern Ocean (south of 60° S), have CaSWF between 0.05 and 1.5 mg m− 3, we consider that the SeaWiFS performance of Ca retrieval is satisfactory and for this Ca range there is no need to further develop a “regional” bio-optical algorithm to account for the previous SeaWiFS “underestimation”.  相似文献   

10.
The empirical approach of remote sensing has a proven capability to provide timely and accurate information on inland and near-coastal transitional waters. This article gives a thorough review of empirical algorithms for quantitatively estimating a variety of parameters from space-borne, airborne and in situ remote sensors in inland and transitional waters, including chlorophyll-a, total suspended solids, Secchi disk depth (z SD), turbidity, absorption by coloured dissolved organic matter (a CDOM) and other parameters, for example, phycocyanin. Current remote-sensing instruments are also reviewed. The theoretical basis of the empirical algorithms is given using fundamental bio-optical theory of the inherent optical properties (IOPs). Bands, band ratios and band arithmetic algorithms that could be used to produce common biogeophysical products for inland/transitional waters are identified. The article discusses the potential role that empirical algorithms could play alongside more advanced model-based algorithms in the future of water remote sensing, especially for near real-time operational monitoring systems. The article aims to describe the current status of empirical remote sensing in inland and near-coastal transitional waters and provide a useful reference to workers. It does not cover ‘inversion’ algorithms.  相似文献   

11.
The effects of the diel (involving a 24 hour period) variations in the surface concentrations of chlorophyll a (C) on the use of once-daily remotely sensed C as the diel average were assessed from the diel records in the derived depth-weighted C (Cd) that should be detected by remote sensing and the in situ surface C at two time-series stations in the North Pacific: the SEATS (SouthEast Asian Time-series Study) station in the northern South China Sea and the ALOHA (A Long-Term Oligotrophic Habitat Assessment) station in the North Pacific subtropical gyre. In situ surface C varied by a factor of about 2.0 and 1.3 over a diel cycle, and by ±20% and ±9% over the diel average at the SEATS and ALOHA stations, respectively. As the overpass-times of the different satellites were not identical, Cd was satellite-dependent. While the Cd corresponding to MODerate resolution Imaging Spectroradiometer on Aqua (MODIS-Aqua) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) overpass-times agreed to ±10%, the Cd corresponding to MEdium Resolution Imaging Spectrometer (MERIS) overpass-time could differ from the other two by ?22% to +28% at the SEATS station and ?1% to +12% at the ALOHA station. In addition, Cd corresponding to the overpass-times of the three satellites deviated from the observed diel average in situ surface C by ?19% to +32% at the SEATS station and by ?6% to +13% at the ALOHA station. These results indicate that, as a result of diel variations, neither a one-time remotely-sensed nor a one-time observed in situ surface C can represent the diel average in situ surface C accurately. Furthermore, diel variations are an inherent source of uncertainty when data from multiple satellites are pooled for use. The magnitudes of these discrepancies can be comparable to the commonly claimed uncertainties in remotely sensed C and thus should be taken into consideration in its interpretation and use.  相似文献   

12.
A spectral matching algorithm (SMA) that allows atmospheric correction in the presence of dust aerosols is applied to SeaWiFS imagery in the northwest Mediterranean Sea. The goal is to find criteria that could be used to identify SMA target pixels and to gain insights into the method's accuracy relative to the standard SeaWiFS processing scheme (STD). This work also represents the first validation of SMA using in situ data. The validation dataset includes water-leaving radiances collected from both a fixed buoy site and from a ship during the Advanced Optical Properties Experiment (AOPEX) cruise in August 2004. Supplementary information was provided by the ship LIDAR and coastal AERONET stations in Villefranche (France) and Blida (Algeria) that recorded aerosol conditions near the buoy and proximal to the dust sources, respectively. Backward aerosol transport trajectories were also available for the AERONET sites, allowing identification of potential dust sources, especially for aerosol layers observed by the LIDAR. Over the study period, four aerosol events affected the buoy vicinity, but SMA retrievals proved superior to standard processing results only when dust was dominant, rather than when dust was simply present. The conditions appropriate for an SMA application could be defined using AERONET parameters. They are a combination of high aerosol optical depth τa and low Ångström exponent α (or τa / α > 0.2). Similar results are obtained using the equivalent SeaWiFS parameters produced by the STD method although the threshold value is different. Since it is preferable to apply the criterion on a per-pixel basis prior to atmospheric correction to select SMA or STD processing, an analogous test using aerosol model-independent quantities derived from SeaWiFS data is proposed. Thus, SMA and STD processing can be applied to a single image, where appropriate.  相似文献   

13.
We describe in detail the implementation of the spectral optimization algorithm (SOA) for Case 2 waters for processing of ocean color data. This algorithm uses aerosol models and a bio-optical reflectance model to provide the top-of atmosphere (TOA) reflectance. The parameters of both models are then determined by fitting the modeled TOA reflectance to that observed from space, using non-linear optimization. The algorithm will be incorporated into the SeaDAS software package as an optional processing switch of the Multi-Sensor Level-1 to Level-2 code. To provide potential users with an understanding of the accuracy and limitations of the algorithm, we generated a synthetic data set and tested the performance of the SOA with both correct and incorrect bio-optical model parameters. Application of the SOA to actual SeaWiFS data in the Lower Chesapeake Bay (for which surface measurements were available) showed that 20% errors in the bio-optical model parameters still enabled retrieval of chlorophyll a and the total absorption coefficient of dissolved plus particulate detrital material at 443 nm with an error of less than 30% and 20%, respectively. In a companion paper we present a validation study of the application of the algorithm in the Chesapeake Bay.  相似文献   

14.
Over the last few decades, the coastal regions throughout the world have experienced incidences of algal blooms, which are harmful or otherwise toxic because of their potential threat to humans as well as marine organisms, owing to accelerated eutrophication from human activities and certain oceanic processes. Previous studies have found that correct identification of these blooms remains a great challenge with the standard bio-optical algorithms applied to satellite ocean color data in optically complex coastal waters containing high concentrations of the interfered dissolved organic and particulate inorganic materials. Here a new method called the red tide index (RI) is presented which is capable of identifying potential areas of harmful algal blooms (HABs) from SeaWiFS ocean color measurements representing the typical Case-2 water environments off the Korean and Chinese coasts. The RI method employs the water-leaving radiances (Lw), collected from in-situ radiometric measurements of three SeaWiFS bands centered at 443 nm, 510 nm and 555 nm, to achieve derivation of indices that are then related to absorbing characteristics of harmful algae (i.e., Lw at 443 nm) from which a best fit with a cubic polynomial function with correlation coefficient of R2 = 0.91 is obtained providing indices of higher ranges for HABs and lower and slightly reduced ranges for turbid and non-bloom waters. Similar indices derived from the use of remote sensing reflectance (Rrs), normalized water-leaving radiance (nLw) and combination of both are found rather inadequate to characterize the variability of the encountered bloom. In order to quantify the HABs in terms of chlorophyll (Chl), an empirical relationship is established between the RI and in-situ Chl in surface waters from about 0.4-71 mg m− 3, which yields a Red tide index Chlorophyll Algorithm (RCA) based on an exponential function with correlation coefficient R2 = 0.92. The established methods were extensively tested and compared with the performances of standard Ocean Chlorophyll 4 (OC4) algorithm and Local Chlorophyll Algorithm (LCA) using SeaWiFS images collected from typical red tide waters of Korean South Sea (KSS), East China Sea (ECS), Yellow Sea (YS) and Bohai Sea (BS) during 1999-2002. The standard spectral ratio algorithms, the OC4 and LCA, yielded large errors in Chl retrievals for coastal areas, besides providing false information about the encountered HABs in KSS, ECS, YS and BS waters. On the contrary, the RI coupled with the standard spectral ratios yielded comprehensive information about various ranges of algal blooms, while RCA Chl showing a good agreement with in-situ data led to enhanced understanding of the spatial and temporal variability of the recent HAB occurrences in high scattering and absorbing waters off the Korean and Chinese coasts.  相似文献   

15.
Chlorophyll-a (Chla) concentrations and ‘water-leaving’ reflectance were assessed along transects in Keweenaw Bay (Lake Superior) and in Green Bay (Lake Michigan) (two of the Laurentian Great Lakes, USA), featuring oligotrophic (0.4–0.8 mg Chla m? 3) and eutrophic to hyper-eutrophic waters (11–131 mg Chla m? 3), respectively. A red-to-NIR band Chla retrieval algorithm proved to be applicable to Green Bay, but gave mostly negative values for Keweenaw Bay. An alternative algorithm could be based on Chla fluorescence, which in Keweenaw Bay was indicated by enhanced reflectance near 680 nm. Bands 7, 8 and 9 of the Medium Resolution Imaging Spectrometer (MERIS) have been specifically designed to detect phytoplankton fluorescence in coastal waters. A quite strong linear relationship was found between Chla concentration and fluorescence line height (FLH) computed with these MERIS bands. The same relationship held for observations on oligotrophic waters elsewhere, but not for Green Bay, where the FLH diminished to become negative as Chla increased. The remote sensing application of the algorithms could be tested because a MERIS scene was acquired coinciding with the day of the field observations in Keweenaw Bay and one day after those in Green Bay. For Green Bay the pixel values from the red-to-NIR band algorithm compared well to the steep Chla gradient in situ. This result is very positive from the perspective of satellite use in monitoring eutrophic inland and coastal waters in many parts of the world. Implementation of the FLH relationship in the scene of Keweenaw Bay produced highly variable pixel values. The FLH in oligotrophic inland waters like Lake Superior appears to be very close to or below the MERIS detection limit. An empirical algorithm incorporating three MERIS bands in the blue-to-green spectral region might be used as an alternative, but its applicability to other regions and seasons remains to be verified. Moreover, none of the algorithms will be suitable for mesotrophic water bodies. The results indicate that Chla mapping in oligotrophic and mesotrophic areas of the Great Lakes remains problematic for the current generation of satellite sensors.  相似文献   

16.
In this paper, uncertainties in the retrieval of satellite surface chlorophyll concentrations in the Mediterranean Sea have been evaluated using both regional and global ocean colour algorithms. The rationale for this effort was to define the most suitable ocean colour algorithm for the reprocessing of the entire SeaWiFS archive over the Mediterranean region where standard algorithms were demonstrated to be inappropriate. Using a large dataset of coincident in situ chlorophyll and optical measurements, covering most of the trophic regimes of the basin, we validated two existing regional algorithms [Bricaud, A., E. Bosc, and D. Antoine, 2002. Algal biomass and sea surface temperature in the Mediterranean Basin — Intercomparison of data from various satellite sensors, and implications for primary production estimates. Remote Sensing of Environment, 81(2-3), 163-178.; D'Ortenzio, F., S. Marullo, M. Ragni, M. R. d'Alcala and R. Santoleri, 2002. Validation of empirical SeaWiFS algorithms for chlorophyll-alpha retrieval in the Mediterranean Sea — A case study for oligotrophic seas. Remote Sensing of Environment, 82(1), 79-94.] and the global algorithm OC4v4 used for standard NASA SeaWiFS products. The results of our analysis confirmed that the OC4v4 performs worse than the two existing regional algorithms. Nonetheless, these two regional algorithms do show uncertainties dependent on chlorophyll values. Then, we introduced a better tuned algorithm, the MedOC4. Using an independent set of in situ chlorophyll data, we quantified the uncertainties in SeaWiFS chlorophyll estimates using the existing and new regional algorithms. The results confirmed that MedOC4 is the best algorithm matching the requirement of unbiased satellite chlorophyll estimates and improving the percentage of the satellite uncertainty, and that the NASA standard chlorophyll products are affected by an uncertainty of the order of 100%. Moreover, the analysis suggests that the poor quality of the SeaWiFS chlorophyll in the Mediterranean is not due to the atmospheric correction term but to peculiarities in the optical properties of the water column. Finally the observed discrepancy between the global and the regional bio-optical algorithms has been discussed analysing the differences between the two in situ datasets used for tuning the algorithms (SeaBASS versus ours). The main results are that methodological differences in the two datasets cannot play a major role and the inherent bio-optical properties of the basin can explain the observed discrepancy. In particular the oligotrophic water of the Mediterranean Sea is less blue (30%) and greener (15%) than the global ocean.  相似文献   

17.
Ocean colour is the only essential climate variable that targets a biological variable (chlorophyll-a concentration (chl-a)) and is also amenable to remote sensing at the global scale. However, the finite lifetime of individual ocean-colour sensors, and the differences in their characteristics increase the difficulty of creating a long-term, consistent, ocean-colour time series that meets the requirements of climate studies. The Ocean Colour Climate Change Initiative (OC-CCI), a European Space Agency programme, has recently produced a time series of satellite-based ocean-colour products at the global scale, merging data from three sensors: Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer on the Aqua Earth Observing System (MODIS-Aqua), and Medium Resolution Imaging Spectrometer (MERIS), while attempting to reduce inter-sensor biases.In this work we present a comparison between the OC-CCI chlorophyll-a product and precursor satellite-derived data sets, from both single missions (SeaWiFS, MODIS-Aqua, and MERIS) and multi-mission products (global ocean colour (GlobColour) and Making Earth Science Data Records for Use in Research Environments (MEaSUREs)). To this end, OC-CCI global monthly composites are compared to the similar products offered by single-mission and multi-mission records. Our results indicate that the OC-CCI product provides a higher number of observations. Comparing the observations that match with precursors, the OC-CCI product was generally most similar to the single-mission products. Relationships between OC-CCI and other precursors did not change significantly during a common and continuous period, and, on average the root-mean-square differences between log-transformed chlorophyll-a concentration are below or equal to 0.11. Further, when considering variability that could arise when merging data from different sources, it is shown that the OC-CCI product is a longer term constant than those from other multi-mission initiatives studied here.  相似文献   

18.
Phytoplankton pigments constitute many more compounds than chlorophyll a that can be applied to study phytoplankton diversity, populations, and primary production. In this study, field measurements were applied to develop ocean color satellite algorithms of phytoplankton pigments from in-water radiometry measurements. The match-up comparisons showed that the satellite-derived pigments from our algorithms agree reasonably well (e.g. 30-55% of uncertainty for SeaWiFS and 37-50% for MODIS-Aqua) to field data, with better agreement (e.g. 30-38% of uncertainty for SeaWiFS and 39-44% for MODIS-Aqua) for pigments abundant in diatoms. The seasonal and spatial variations of satellite-derived phytoplankton biomarker pigments, such as fucoxanthin, which is abundant in diatoms, peridinin, which is found only in peridinin-containing dinoflagellates, and zeaxanthin, which is primarily from cyanobacteria in coastal waters, revealed that higher densities of diatoms are more likely to occur on the inner shelf and during winter-spring and obscure other abundant phytoplankton groups. However, relatively higher densities of other phytoplankton, such as dinoflagellates and cyanobacteria, are likely to occur on the mid- to outer-continental shelf and during summer. Seasonal variation of riverine discharge may play an important role in stimulating algal blooms, in particular diatoms, while higher abundances of cyanobacteria coincide with warmer water temperatures and lower nutrient concentrations.  相似文献   

19.
The Antarctic waters are known to be optically unique and the standard empirical ocean colour algorithms applied to these waters may not address the regional bio-optical characteristics. This article sheds light on the performance of current empirical algorithms and a regionally optimized algorithm (ROA) for the retrieval of chlorophyll-a (chl-a) concentration from Aqua-Moderate Resolution Imaging Spectroradiometer (Aqua-MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) in the Indian Ocean Sector of Southern Ocean (IOSO). Analysis indicated that empirical algorithms used for the retrieval of chl-a concentration from Aqua-MODIS and SeaWiFS underestimate by a factor varying from 2 to 2.9, resulting in underestimation when in situ chl-a exceeds about 0.3 mg m?3. To explain these uncertainties, a study was carried out to understand the effect of phytoplankton pigment composition and pigment packaging on remote-sensing reflectance (Rrs,λ), from the analysis of phytoplankton-specific absorption coefficient (aph,*λ). The spatial variation of phytoplankton groups analysed using diagnostics pigments (DP) indicated shifting of the phytoplankton community structure from offshore to coastal Antarctic, with a significant increasing trend for diatoms and a decreasing trend for haptophytes population. The diatom-dominated population exhibits lower aph,*λ in the 405–510 nm region (with relative flattening in 443–489 nm) compared with the aph,*λ spectra of the haptophytes-dominated population that peaks near 443 nm. The flattening of aph,*λ spectra for the diatom-dominated population was attributed to its larger cell size, which leads to pigment packaging (intracellular shading) and in turn results in higher Rrs,λ. The relationship between pigment composition (normalized by chl-a) and blue:green absorption band ratios (aph,*443:aph,*555 and aph,*489:aph,*555) corresponding to the Aqua-MODIS and SeaWiFS bands showed in-phase associations with most of the pigments such as 19?-hexanoyloxyfucoxanthin, 19?-butanoyloxyfucoxanthin, peridinin, and zeaxanthin. In contrast, the out-of-phase association observed between the blue:green absorption ratios and fucoxanthin indicated apparent deviations from the general pigment retrieval algorithms, which assumes that blue:green ratios vary in a systematic form with chl-a. The out-of-phase correspondence suggests that the increasing trend of fucoxanthin pigments towards the Antarctic coast was associated with the decreasing trend of blue:green absorption ratios and in turn results in higher Rrs,λ. Therefore, an increase in Rrs,λ leads to underestimation of chl-a from Aqua-MODIS and SeaWiFS in the IOSO region.  相似文献   

20.
While many (and more on the way) ocean color satellite sensors presently provide routine observations of ocean biological processes, limited concrete effort has taken place to demonstrate how these data can be used together in any systematic way. One obvious way is to merge these data streams together to provide robust merged climate data records with measurable uncertainty bounds. Here, we present and implement a formalism for merging global satellite ocean color data streams to produce uniform data products. Normalized water-leaving radiances (LwN(λ)) from SeaWiFS and MODIS are used together in a semianalytical ocean color merging model to produce global retrievals of 3 biogeochemically relevant variables (chlorophyll, combined dissolved and detrital absorption coefficient, particulate backscattering coefficient). The model-based merging approach has various benefits over techniques that blend end products, such as chlorophyll concentrations; (1) merging at the level of water-leaving radiance ensures simultaneity and consistency of the retrievals, (2) it works with single or multiple data sources regardless of their specific bands, (3) it exploits band redundancies and band differences, (4) it can account for the uncertainties of the incoming LwN(λ) data streams and, (5) it provides confidence intervals for the derived products. These features are illustrated through several examples of ocean color data merging using SeaWiFS and MODIS Terra and Aqua LwN(λ) imagery. Compared to each of the original data source, the products derived from the merging procedure show enhanced global daily coverage and lower uncertainties in the retrieved variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号